Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(22): 19021-19029, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694474

RESUMO

Superhydrophobic surfaces have great potential for various applications owing to their superior dewetting and mobility of water droplets. However, the physical robustness of nano/microscale rough surface structures supporting superhydrophobicity is critical in real applications. In this study, to create a superhydrophobic surface on copper, we employed copper electrodeposition to create a nano/microscale rough surface structure as an alternative to the nanoneedle CuO structure. The rough electrodeposited copper surface with a thin Teflon coating shows superhydrophobicity. The enhancement of dewetting and mobility of water droplets on copper surfaces by electrodeposition and hydrophobization significantly improved the condensation heat transfer by up to approximately 78% compared to that of copper substrates. Moreover, the nano/microscale rough surface structure of the electrodeposited copper surface exhibits better tolerance to physical rubbing, which destroys the nanoneedle-structured CuO surface. Therefore, the condensation heat transfer of the superhydrophobic electrodeposited copper surface decreased by only less than 10%, while that of the nanoneedle-structured CuO surface decreased by approximately 40%. This suggests that an electrodeposited copper surface can lead to the stable performance of superhydrophobicity for real applications.

2.
Nanomaterials (Basel) ; 11(11)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34835584

RESUMO

The heat dissipation of a metal heat sink for passive cooling can be enhanced by surface modifications to increase its thermal emissivity, which is reflected by a darker surface appearance. In this study, copper electrodeposition followed by heat treatment was applied to a copper substrate. The heat treatment formed a nanoporous oxide layer containing CuO and Cu2O, which has a dark blackish color and therefore increased the thermal emissivity of the surface. The heat dissipation performance was evaluated using the sample as a heat sink for an LED module. The surface-treated copper heat sink with a high thermal emissivity oxide layer enhanced the heat dissipation of the LED module and allowed it to be operated at a lower temperature. With an increase in the heat treatment, the thermal emissivity increases to 0.865, but the thermal diffusivity is lower than the copper substrate by ~12%. These results indicate that the oxide layer is a thermal barrier for heat transfer, thus optimization between the oxide thickness and thermal emissivity is required by evaluating heat dissipation performance in operating conditions. In this study, an oxide layer with an emissivity of 0.857 and ~5% lower thermal diffusivity than the copper substrate showed the lowest LED operating temperature.

3.
J Nanosci Nanotechnol ; 20(7): 4390-4393, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968481

RESUMO

Multi-functional quinary Cr-Al-Ti-Si-N thin films were deposited onto WC-Co substrates using a cathodic arc evaporation system. In this study, the influence of silicon contents on the microstructure, mechanical, tribological, and oxidation properties of Cr-Al-Ti-Si-N thin films were systematically investigated and correlated for application of cutting tools. Based on results from various analyses, the Cr-Al-Ti-Si-N films showed excellent properties including mechanical, tribological, oxidation and adhesion values compared with those of the Cr-Al-Ti-N film. The Cr-Al-Ti-Si-N films with a Si content of around 4.21 at.% exhibited the highest hardness of 45 GPa, very low friction coefficient of 0.38 at room temperature against an Inconel alloy ball and superior adhesion property (105 N). The Cr-Al-Ti-Si-N films also showed excellent oxidation resistance after annealing in the ambient air at 1000 °C. Therefore, the Cr-Al-Ti-Si(4.21 at.%)-N films could be help to improve the performance of machining and cutting tools with application of the films.

4.
J Nanosci Nanotechnol ; 20(7): 4394-4397, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968482

RESUMO

High temperature oxidation behavior of nanocomposite films is very important characteristics for application of machining and cutting tools. Quaternary Cr-Al-Si-N nanocomposite films with various compositions were deposited onto WC-Co and Si wafer substrates using a filtered arc ion plating technique. The composition of the films were controlled by different combinations of CrAl2 and Cr4Si composite target power in a reactive gas mixture of high purity Ar and N2 during depositions. The instrumental analyses revealed that the synthesized Cr-Al-Si-N films with Si content of 2.78 at.% were nanocomposites consisting of nano-sized crystallites (3-7 nm in dia.) and a thin layer of amorphous Si3N4 phases. The nanohardness of the Cr-Al-Si-N films exhibited the maximum values of ~42 GPa at a Si content of ~2.78 at.% due to the microstructural change to nanocomposite as well as solid-solution hardening. The Cr-Al-Si-N film shows superior result of oxidation resistance at 1050 °C for 30 min in air. Based on the XRD and GDOES analyses on the oxidized films, it could be revealed that the enrichment of Al (17.94 at.%) and Cr (26.24 at.%) elements in the film leads to form an Al2O3 and Cr2O3 layer on the Cr-Al-Si-N film surface. Therefore, in this study, the microstructural changes on the mechanical properties and oxidation behavior with various compositions in the Cr-Al-Si-N nanocomposite films were discussed and correlated with the deposition parameters.

5.
RSC Adv ; 9(55): 32154-32164, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35530813

RESUMO

In the current study, we have explored the coupling of Bi2O3 negative electrode and MnO2 positive electrode materials as an asymmetric faradaic assembly for a high-performance hybrid electrochemical energy storage device (HEESD). Aiming at a low-cost device, both the electrodes have been synthesized by a simple, scalable, and cost-effective chemical synthesis method. After their requisite structure-morphological confirmation and correlation, these electrodes were separately examined for their electrochemical performance in a three-electrode configuration. The results obtained confirm that Bi2O3 and MnO2 exhibit 910 C g-1 and 424 C g-1 specific capacity, respectively, at 2 A g-1 current density. Notably, the performance of both electrodes has been analyzed using Dunn's method to highlight the distinct nature of their faradaic properties. Afterwards, the asymmetric faradaic assembly of both electrodes, when assembled as a HEESD (MnO2//Bi2O3), delivered 411 C g-1 specific capacity at 1 A g-1 current density due to the inclusive contribution from the capacitive as well as the non-capacitive faradaic quotient. Consequently, the assembly offers an excellent energy density of 79 W h kg-1 at a power density of 702 W kg-1, with a magnificent retention of energy density up to 21.1 W h kg-1 at 14 339 W kg-1 power density. Moreover, it demonstrates long-term cycling stability at 10 A g-1, retaining 85.2% of its initial energy density after 5000 cycles, which is significant in comparison with the previously reported literature. Additionally, to check the performance of the device in real time, two HEESDs were connected in series to power a light-emitting diode. The results obtained provide significant insight into hybrid coupling, where two different faradaic electrodes can be combined in a synergistic combination for a high-performance HEESD.

6.
Materials (Basel) ; 11(12)2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513832

RESUMO

Plasma electrolytic oxidation (PEO) coating was obtained on AZ31 Mg alloy using a direct current in a sodium silicate-based electrolyte with and without a carbon nanotube (CNT) additive. The surface morphology and phase composition of the PEO coatings were investigated through field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The corrosion-resistance properties of the PEO coatings were evaluated using potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS) in a 3.5 wt.% NaCl solution. Furthermore, the heat-dissipation property was evaluated by a heat-flux measurement setup using a modified steady-state method and Fourier transform infrared spectroscopy (FT-IR). The results demonstrate that, by increasing the concentration of CNT additive in the electrolyte, the micropores and cracks of the PEO coatings are greatly decreased. In addition, the anticorrosion performance of the PEO coatings that incorporated CNT for the protection of the Mg substrate was improved. Finally, the coating's heat-dissipation property was improved by the incorporation of CNT with high thermal conductivity and high thermal emissivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...