Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(15)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861331

RESUMO

Viral vectors are being used for the treatment of cancer. Yet, their efficacy varies among tumors and their use poses challenges in immunosuppressed patients, underscoring the need for alternatives. We report striking antitumoral effects by a nonlytic viral vector based on attenuated lymphocytic choriomeningitis virus (r3LCMV). We show in multiple tumor models that injection of tumor-bearing mice with this vector results in improved tumor control and survival. Importantly, r3LCMV improved tumor control in immunodeficient Rag1-/- mice and MyD88-/- mice, suggesting that multiple pathways contributed to the antitumoral effects. The antitumoral effects of r3LCMV were also observed when this vector was administered several weeks before tumor challenges, suggesting the induction of trained immunity. Single-cell RNA sequencing analyses, antibody blockade experiments, and knockout models revealed a critical role for host-intrinsic IFN-I in the antitumoral efficacy of r3LCMV vectors. Collectively, these data demonstrate potent antitumoral effects by r3LCMV vectors and unveil multiple mechanisms underlying their antitumoral efficacy.


Assuntos
Vetores Genéticos , Interferon Tipo I , Vírus da Coriomeningite Linfocítica , Camundongos Knockout , Animais , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Humanos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Neoplasias Experimentais/patologia , Proteínas de Homeodomínio
2.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106001

RESUMO

Viral vectors are being used for the treatment of cancer. Yet their efficacy varies among tumors and their use poses challenges in immunosuppressed patients, underscoring the need for alternatives. We report striking antitumoral effects by a nonlytic viral vector based on attenuated lymphocytic choriomeningitis virus (r3LCMV). We show in multiple tumor models that injection of tumor-bearing mice with this novel vector results in improved tumor control and survival. Importantly, r3LCMV also improved tumor control in immunodeficient Rag1-/- mice. Single cell RNA-Seq analyses, antibody blockade experiments, and KO models revealed a critical role for host IFN-I in the antitumoral efficacy of r3LCMV vectors. Collectively, these data demonstrate potent antitumoral effects by a replication-attenuated LCMV vector and unveil mechanisms underlying its antitumoral efficacy.

3.
Blood Adv ; 7(23): 7319-7328, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37874915

RESUMO

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterized by the accumulation of clonal mononuclear phagocyte system cells expressing CD1a and CD207. In the past decade, molecular profiling of LCH as well as other histiocytic neoplasms demonstrated that these diseases are driven by MAPK activating alterations, with somatic BRAFV600E mutations in >50% of patients with LCH, and clinical inhibition of MAPK signaling has demonstrated remarkable clinical efficacy. At the same time, activating alterations in kinase-encoding genes, such as PIK3CA, ALK, RET, and CSF1R, which can activate mitogenic pathways independent from the MAPK pathway, have been reported in a subset of histiocytic neoplasms with anecdotal evidence of successful targeted treatment of histiocytoses harboring driver alterations in RET, ALK, and CSF1R. However, evidence supporting the biological consequences of expression of PIK3CA mutations in hematopoietic cells has been lacking, and whether targeted inhibition of PI3K is clinically efficacious in histiocytic neoplasms is unknown. Here, we provide evidence that activating mutations in PIK3CA can drive histiocytic neoplasms in vivo using a conditional knockin mouse expressing mutant PIK3CAH1047R in monocyte/dendritic cell progenitors. In parallel, we demonstrate successful treatment of PIK3CA-mutated, multisystemic LCH using alpelisib, an inhibitor of the alpha catalytic subunit of PI3K. Alpelisib demonstrated a tolerable safety profile at a dose of 750 mg per week and clinical and metabolic complete remission in a patient with PIK3CA-mutated LCH. These data demonstrate PIK3CA as a targetable noncanonical driver of LCH and underscore the importance of mutational analysis-based personalized treatment in histiocytic neoplasms.


Assuntos
Neoplasias Hematológicas , Histiocitose de Células de Langerhans , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Histiocitose de Células de Langerhans/tratamento farmacológico , Receptores Proteína Tirosina Quinases , Fosfatidilinositol 3-Quinases/uso terapêutico , Classe I de Fosfatidilinositol 3-Quinases/genética
4.
J Clin Invest ; 132(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219482

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main antigen in all approved COVID-19 vaccines and is also the only target for monoclonal antibody (mAb) therapies. Immune responses to other viral antigens are generated after SARS-CoV-2 infection, but their contribution to the antiviral response remains unclear. Here, we interrogated whether nucleocapsid-specific antibodies can improve protection against SARS-CoV-2. We first immunized mice with a nucleocapsid-based vaccine and then transferred sera from these mice into naive mice, followed by challenge with SARS-CoV-2. We show that mice that received nucleocapsid-specific sera or a nucleocapsid-specific mAb exhibited enhanced control of SARS-CoV-2. Nucleocapsid-specific antibodies elicited NK-mediated, antibody-dependent cellular cytotoxicity (ADCC) against infected cells. To our knowledge, these findings provide the first demonstration in the coronavirus literature that antibody responses specific to the nucleocapsid protein can improve viral clearance, providing a rationale for the clinical evaluation of nucleocapsid-based mAb therapies to treat COVID-19.


Assuntos
Anticorpos Monoclonais , COVID-19 , Nucleocapsídeo , Animais , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais , COVID-19/terapia , Vacinas contra COVID-19 , Nucleocapsídeo/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
5.
Front Immunol ; 13: 908707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958615

RESUMO

T cell-based therapies have been widely explored for the treatment of cancer and chronic infection, but B cell-based therapies have remained largely unexplored. To study the effect of B cell therapy, we adoptively transferred virus-specific B cells into mice that were chronically infected with lymphocytic choriomeningitis virus (LCMV). Adoptive transfer of virus-specific B cells resulted in increase in antibody titers and reduction of viral loads. Importantly, the efficacy of B cell therapy was partly dependent on antibody effector functions, and was improved by co-transferring virus-specific CD4 T cells. These findings provide a proof-of-concept that adoptive B cell therapy can be effective for the treatment of chronic infections, but provision of virus-specific CD4 T cells may be critical for optimal virus neutralization.


Assuntos
Coriomeningite Linfocítica , Animais , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva , Coriomeningite Linfocítica/terapia , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL
6.
Curr Protoc Immunol ; 130(1): e99, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32940427

RESUMO

In this invited article, we explain technical aspects of the lymphocytic choriomeningitis virus (LCMV) system, providing an update of a prior contribution by Matthias von Herrath and J. Lindsay Whitton. We provide an explanation of the LCMV infection models, highlighting the importance of selecting an appropriate route and viral strain. We also describe how to quantify virus-specific immune responses, followed by an explanation of useful transgenic systems. Specifically, our article will focus on the following protocols. © 2020 Wiley Periodicals LLC. Basic Protocol 1: LCMV infection routes in mice Support Protocol 1: Preparation of LCMV stocks ASSAYS TO MEASURE LCMV TITERS Support Protocol 2: Plaque assay Support Protocol 3: Immunofluorescence focus assay (IFA) to measure LCMV titer MEASUREMENT OF T CELL AND B CELL RESPONSES TO LCMV INFECTION Basic Protocol 2: Triple tetramer staining for detection of LCMV-specific CD8 T cells Basic Protocol 3: Intracellular cytokine staining (ICS) for detection of LCMV-specific T cells Basic Protocol 4: Enumeration of direct ex vivo LCMV-specific antibody-secreting cells (ASC) Basic Protocol 5: Limiting dilution assay (LDA) for detection of LCMV-specific memory B cells Basic Protocol 6: ELISA for quantification of LCMV-specific IgG antibody Support Protocol 4: Preparation of splenic lymphocytes Support Protocol 5: Making BHK21-LCMV lysate Basic Protocol 7: Challenge models TRANSGENIC MODELS Basic Protocol 8: Transfer of P14 cells to interrogate the role of IFN-I on CD8 T cell responses Basic Protocol 9: Comparing the expansion of naïve versus memory CD4 T cells following chronic viral challenge.


Assuntos
Imunidade Adaptativa , Interações Hospedeiro-Patógeno/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Imunofluorescência/métodos , Memória Imunológica , Depleção Linfocítica , Coriomeningite Linfocítica/transmissão , Camundongos , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/imunologia , Linfócitos T/metabolismo , Carga Viral/métodos , Ensaio de Placa Viral/métodos
7.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32820330

RESUMO

Type I interferons (IFN-I) are a major antiviral defense and are critical for the activation of the adaptive immune system. However, early viral clearance by IFN-I could limit antigen availability, which could in turn impinge upon the priming of the adaptive immune system. In this study, we hypothesized that transient IFN-I blockade could increase antigen presentation after acute viral infection. To test this hypothesis, we infected mice with viruses coadministered with a single dose of IFN-I receptor-blocking antibody to induce a short-term blockade of the IFN-I pathway. This resulted in a transient "spike" in antigen levels, followed by rapid antigen clearance. Interestingly, short-term IFN-I blockade after coronavirus, flavivirus, rhabdovirus, or arenavirus infection induced a long-lasting enhancement of immunological memory that conferred improved protection upon subsequent reinfections. Short-term IFN-I blockade also improved the efficacy of viral vaccines. These findings demonstrate a novel mechanism by which IFN-I regulate immunological memory and provide insights for rational vaccine design.


Assuntos
Imunogenicidade da Vacina/imunologia , Interferon Tipo I/antagonistas & inibidores , Interferon-alfa/imunologia , Receptor de Interferon alfa e beta/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Bloqueadores/imunologia , Anticorpos Bloqueadores/farmacologia , Anticorpos Antivirais/imunologia , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Modelos Animais de Doenças , Expressão Gênica/imunologia , Células HEK293 , Humanos , Memória Imunológica , Interferon-alfa/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Transfecção , Infecção por Zika virus/virologia
8.
Sci Transl Med ; 11(511)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554738

RESUMO

Adult stem and progenitor cells are uniquely capable of self-renewal, and targeting this process represents a potential therapeutic opportunity. The early erythroid progenitor, burst-forming unit erythroid (BFU-E), has substantial self-renewal potential and serves as a key cell type for the treatment of anemias. However, our understanding of mechanisms underlying BFU-E self-renewal is extremely limited. Here, we found that the muscarinic acetylcholine receptor, cholinergic receptor, muscarinic 4 (CHRM4), pathway regulates BFU-E self-renewal and that pharmacological inhibition of CHRM4 corrects anemias of myelodysplastic syndrome (MDS), aging, and hemolysis. Genetic down-regulation of CHRM4 or pharmacologic inhibition of CHRM4 using the selective antagonist PD102807 promoted BFU-E self-renewal, whereas deletion of Chrm4 increased erythroid cell production under stress conditions in vivo. Moreover, muscarinic acetylcholine receptor antagonists corrected anemias in mouse models of MDS, aging, and hemolysis in vivo, extending the survival of mice with MDS relative to that of controls. The effects of muscarinic receptor antagonism on promoting expansion of BFU-Es were mediated by cyclic AMP induction of the transcription factor CREB, whose targets up-regulated key regulators of BFU-E self-renewal. On the basis of these data, we propose a model of hematopoietic progenitor self-renewal through a cholinergic-mediated "hematopoietic reflex" and identify muscarinic acetylcholine receptor antagonists as potential therapies for anemias associated with MDS, aging, and hemolysis.


Assuntos
Autorrenovação Celular , Células Eritroides/citologia , Células Eritroides/metabolismo , Receptores Muscarínicos/metabolismo , Células-Tronco/citologia , Anemia/tratamento farmacológico , Animais , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Células Eritroides/efeitos dos fármacos , Células Precursoras Eritroides , Eritropoese/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/uso terapêutico , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
9.
PLoS Pathog ; 15(2): e1007583, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30726291

RESUMO

CD8 T cells are necessary for the elimination of intracellular pathogens, but during chronic viral infections, CD8 T cells become exhausted and unable to control the persistent infection. Programmed cell death-1 (PD-1) blockade therapies have been shown to improve CD8 T cell responses during chronic viral infections. These therapies have been licensed to treat cancers in humans, but they have not yet been licensed to treat chronic viral infections because limited benefit is seen in pre-clinical animal models of chronic infection. In the present study, we investigated whether TLR4 triggering could improve PD-1 therapy during a chronic viral infection. Using the model of chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, we show that TLR4 triggering with sublethal doses of lipopolysaccharide (LPS) followed by PD-1 blockade results in superior improvement in circulating virus-specific CD8 T cell responses, relative to PD-1 blockade alone. Moreover, we show that the synergy between LPS and PD-1 blockade is dependent on B7 costimulation and mediated by a dendritic cell (DC) intrinsic mechanism. Systemic LPS administration may have safety concerns, motivating us to devise a safer regimen. We show that ex vivo activation of DCs with LPS, followed by adoptive DC transfer, results in a similar potentiation of PD-1 therapy without inducing wasting disease. In summary, our data demonstrate a previously unidentified role for LPS/TLR4 signaling in modulating the host response to PD-1 therapy. These findings may be important for developing novel checkpoint therapies against chronic viral infection.


Assuntos
Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/fisiologia , Doença Crônica , Células Dendríticas , Feminino , Lipopolissacarídeos/farmacologia , Ativação Linfocitária , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/imunologia , Viroses/imunologia
10.
Cancer Cell ; 34(2): 225-241.e8, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30107174

RESUMO

Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that although different spliceosome gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.


Assuntos
Mutação , Neoplasias/genética , Spliceossomos , Animais , Caspase 8/genética , Feminino , Hematopoese , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de Serina-Arginina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA