Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1308293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098667

RESUMO

The human microbiome exhibits intricate populations across the body, with the vaginal tract serving as an ecosystem characterized by the prevalence of the genus Lactobacillus. Disruptions in the vaginal microbiota, which are frequently linked to variables such as sexual activity, hormonal fluctuations, and excessive use of antibiotics, can result in vaginal dysbiosis and the development of diseases such as bacterial vaginosis (BV) and candidiasis. Lactobacillus species, owing to their capacity to create an acidic environment through the production of lactic acid, have a key function within this complex microbial community: they inhibit the growth of harmful microorganisms. This study aimed to investigate the genomic characteristics of L. rhamnosus LR6, a newly discovered strain isolated from the vaginal microbiota of 20 healthy women to assess its potential as a vaginal probiotic. We performed a comparative investigation of the genetic traits of L. rhamnosus using 45 publicly available genomes from various sources. We evaluated the genetic characteristics related to carbohydrate utilization, adhesion to host cells, and the presence of bacteriocin clusters. A comprehensive study was conducted by integrating in silico evaluations with experimental techniques to authenticate the physiological characteristics of strain LR6. We further used a rat model to assess the impact of L. rhamnosus LR6 administration on the changes in the gastrointestinal tract and the vaginal microbiome. The assessments revealed a significantly high inhibitory activity against pathogens, enhanced adherence to host cells, and high lactic acid production. Rat experiments revealed changes in both the fecal and vaginal microbiota; in treated rats, Firmicutes increased in both; Lactobacillaceae increased in the fecal samples; and Enterobacteriaceae decreased but Enterococcaceae, Streptococcaceae, and Morganellaceae increased in the vaginal samples. The study results provide evidence of the genetic characteristics and probiotic properties of LR6, and suggest that oral administration of L. rhamnosus LR6 can alter both gut and vaginal microbiome. Collectively, these findings establish L. rhamnosus LR6 as a highly promising candidate for improving vaginal health.

2.
Nutrients ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111086

RESUMO

Vaginal dysbiosis can lead to serious infections in asymptomatic women. Lactobacillus probiotics (LBPs) are being investigated as a promising therapy for reversing vaginal microbiota dysbiosis. This study aimed to investigate whether administering LBPs could improve vaginal dysbiosis and facilitate the colonization of Lactobacillus species in asymptomatic women. 36 asymptomatic women were classified based on the Nugent score as Low-NS (n = 26) and High-NS (n = 10) groups. A combination of Lactobacillus acidophilus CBT LA1, Lactobacillus rhamnosus CBT LR5, and Lactobacillus reuteri CBT LU4 was administered orally for 6 weeks. The study found that among women with a High-NS, 60% showed improved vaginal dysbiosis with a Low-NS after LBP intake, while four retained a High-NS. Among women with a Low-NS, 11.5 % switched to a High-NS. Genera associated with vaginal dysbiosis were positively correlated with the alpha diversity or NS, while a negative correlation was observed between Lactobacillus and the alpha diversity and with the NS. Vaginal dysbiosis in asymptomatic women with an HNS improved after 6 weeks of LBP intake, and qRT-PCR revealed the colonization of Lactobacillus spp. in the vagina. These results suggested that oral administration of this LBP could improve vaginal health in asymptomatic women with an HNS.


Assuntos
Probióticos , Vaginose Bacteriana , Feminino , Humanos , Lactobacillus , Vaginose Bacteriana/terapia , Disbiose/terapia , Vagina , Probióticos/uso terapêutico
3.
Microbiome ; 10(1): 238, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36567320

RESUMO

BACKGROUND: Aging is a natural process that an organism gradually loses its physical fitness and functionality. Great efforts have been made to understand and intervene in this deteriorating process. The gut microbiota affects host physiology, and dysbiosis of the microbial community often underlies the pathogenesis of host disorders. The commensal microbiota also changes with aging; however, the interplay between the microbiota and host aging remains largely unexplored. Here, we systematically examined the ameliorating effects of the gut microbiota derived from the young on the physiology and phenotypes of the aged. RESULTS: As the fecal microbiota was transplanted from young mice at 5 weeks after birth into 12-month-old ones, the thickness of the muscle fiber and grip strength were increased, and the water retention ability of the skin was enhanced with thickened stratum corneum. Muscle thickness was also marginally increased in 25-month-old mice after transferring the gut microbiota from the young. Bacteria enriched in 12-month-old mice that received the young-derived microbiota significantly correlated with the improved host fitness and altered gene expression. In the dermis of these mice, transcription of Dbn1 was most upregulated and DBN1-expressing cells increased twice. Dbn1-heterozygous mice exhibited impaired skin barrier function and hydration. CONCLUSIONS: We revealed that the young-derived gut microbiota rejuvenates the physical fitness of the aged by altering the microbial composition of the gut and gene expression in muscle and skin. Dbn1, for the first time, was found to be induced by the young microbiota and to modulate skin hydration. Our results provide solid evidence that the gut microbiota from the young improves the vitality of the aged. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Envelhecimento/fisiologia , Transplante de Microbiota Fecal , Aptidão Física , Camundongos Endogâmicos C57BL
4.
Gut ; 71(7): 1266-1276, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34389621

RESUMO

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer-related mortality. Although microbes besides Helicobacter pylori may also contribute to gastric carcinogenesis, wild-type germ-free (GF) mouse models investigating the role of human gastric microbiota in the process are not yet available. We aimed to evaluate the histopathological features of GF mouse stomachs transplanted with gastric microbiota from patients with different gastric disease states and their relationships with the microbiota. DESIGN: Microbiota profiles in corpus and antrum tissues and gastric fluid from 12 patients with gastric dysplasia or GC were analysed. Thereafter, biopsied corpus and antrum tissues and gastric fluid from patients (n=15 and n=12, respectively) with chronic superficial gastritis, intestinal metaplasia or GC were inoculated into 42 GF C57BL/6 mice. The gastric microbiota was analysed by amplicon sequencing. Histopathological features of mouse stomachs were analysed immunohistochemically at 1 month after inoculation. An independent set of an additional 15 GF mice was also analysed at 1 year. RESULTS: The microbial community structures of patients with dysplasia or GC in the corpus and antrum were similar. The gastric microbiota from patients with intestinal metaplasia or GC selectively colonised the mouse stomachs and induced premalignant lesions: loss of parietal cells and increases in inflammation foci, in F4/80 and Ki-67 expression, and in CD44v9/GSII lectin expression. Marked dysplastic changes were noted at 1 year post inoculation. CONCLUSION: Major histopathological features of premalignant changes are reproducible in GF mice transplanted with gastric microbiota from patients with intestinal metaplasia or GC. Our results suggest that GF mice are useful for analysing the causality of associations reported in human gastric microbiome studies.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Microbiota , Neoplasias Gástricas , Animais , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/patologia , Humanos , Hiperplasia/patologia , Metaplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Gástricas/patologia
5.
Microbiome ; 9(1): 122, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039418

RESUMO

BACKGROUND: Successful chemoprevention or chemotherapy is achieved through targeted delivery of prophylactic agents during initial phases of carcinogenesis or therapeutic agents to malignant tumors. Bacteria can be used as anticancer agents, but efforts to utilize attenuated pathogenic bacteria suffer from the risk of toxicity or infection. Lactic acid bacteria are safe to eat and often confer health benefits, making them ideal candidates for live vehicles engineered to deliver anticancer drugs. RESULTS: In this study, we developed an effective bacterial drug delivery system for colorectal cancer (CRC) therapy using the lactic acid bacterium Pediococcus pentosaceus. It is equipped with dual gene cassettes driven by a strong inducible promoter that encode the therapeutic protein P8 fused to a secretion signal peptide and a complementation system. In an inducible CRC cell-derived xenograft mouse model, our synthetic probiotic significantly reduced tumor volume and inhibited tumor growth relative to the control. Mice with colitis-associated CRC induced by azoxymethane and dextran sodium sulfate exhibited polyp regression and recovered taxonomic diversity when the engineered bacterium was orally administered. Further, the synthetic probiotic modulated gut microbiota and alleviated the chemically induced dysbiosis. Correlation analysis demonstrated that specific bacterial taxa potentially associated with eubiosis or dysbiosis, such as Akkermansia or Turicibacter, have positive or negative relationships with other microbial members. CONCLUSIONS: Taken together, our work illustrates that an effective and stable synthetic probiotic composed of P. pentosaceus and the P8 therapeutic protein can reduce CRC and contribute to rebiosis, and the validity and feasibility of cell-based designer biopharmaceuticals for both treating CRC and ameliorating impaired microbiota. Video abstract.


Assuntos
Colite , Neoplasias Colorretais , Microbioma Gastrointestinal , Probióticos , Animais , Azoximetano , Neoplasias Colorretais/tratamento farmacológico , Sulfato de Dextrana , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...