Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Organ Transplantation ; (6): 131-137, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005243

RESUMO

Organ preservation fluid could mitigate cold ischemia injury and maintain normal function of the grafts. At present, how to reduce a series of injury caused by cold ischemia of donor liver and improve the preservation quality of grafts are the hot and challenging spots in this field. Currently, preservation fluid in clinical practice has not achieved ideal preservation effect, especially for the protection of marginal donor organs. In the context of severe donor shortage, the key solution is still to explore the optimal preservation protocol for donor liver to prevent grafts from cold ischemia injury. In this article, the mechanism of donor liver injury during cold ischemia, the classification and evolution of donor liver preservation fluid were summarized, the development direction and challenges of donor liver preservation fluid were discussed, aiming to provide novel ideas and references for the research and development of donor liver preservation fluid.

2.
J Immunol Res ; 2022: 1032106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164322

RESUMO

Background: Hepatocellular carcinoma (HCC) cell-derived exosomes have shown effects on inducing M2 macrophage polarization and promoting HCC progression. MiR-452-5p was reported by recent studies to promote malignancy progression as an exosomal microRNA that secreted by HCC cells, of which the underlying mechanism remains unclear. Here, we further explored how miR-452-5p functions in HCC. Methods: MiR-452-5p expressions in HCC cells was examined by in situ hybridization. Next, HCC cell lines were transfected with the mimics or the inhibitor of miR-452-5p. Transfected cells' biological behavior were analyzed by CCK-8, flow cytometry, and Transwell assay. Then, exosomes were purified from miR-452-5p inhibited or overexpressed HCC cells and cocultured with macrophages to examine the role of miR-452-5p in macrophage polarization. To examine the role of exosomal miR-452-5p on macrophage polarization and tumor growth. We also performed the dual-luciferase assay to explore the targeting relationship between miR-452-5p and TIMP3. Results: The upregulation of miR-452-5p was identified in HCC. The effects of HCC cell-derived exosomes on accelerating HCC migration and invasion and inducing M2 macrophage polarization were confirmed, which were further enhanced after overexpressing miR-452-5p but neutralized after silencing miR-452-5p. In addition, in vivo experiments demonstrated the effect of miR-452-5p on accelerating HCC growth and metastasis. Also, we identified that TIMP3 overexpression inhibited the promoted cell invasion and migration by HCC cell-derived exosomes. Conclusion: Exosomal miR-452-5p secreted from HCC cells could induce polarization of M2 macrophage and therefore stimulating HCC progression by targeting TIMP3. Thus, miR-452-5p might be a potential biomarker for HCC prognosis.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , MicroRNAs , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Sincalida/genética , Sincalida/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...