Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 112(2): 250-264, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122213

RESUMO

The chemical and physical mechanisms by which gyrating beads accelerate amyloid fibrillization in microtiter plate assays are unclear. Identifying these mechanisms will help optimize high-throughput screening assays for molecules and mutations that modulate aggregation and might explain why different research groups report different rates of aggregation for identical proteins. This article investigates how the rate of superoxide dismutase-1 (SOD1) fibrillization is affected by 12 different beads with a wide range of hydrophobicity, mass, stiffness, and topology but identical diameter. All assays were performed on D90A apo-SOD1, which is a stable and wild-type-like variant of SOD1. The most significant and uniform correlation between any material property of each bead and that bead's effect on SOD1 fibrillization rate was with regard to bead mass. A linear correlation existed between bead mass and rate of fibril elongation (R2 = 0.7): heavier beads produced faster rates and shorter fibrils. Nucleation rates (lag time) also correlated with bead mass, but only for non-polymeric beads (i.e., glass, ceramic, metallic). The effect of bead mass on fibrillization correlated (R2 = 0.96) with variations in buoyant forces and contact forces (between bead and microplate well), and was not an artifact of residual momentum during intermittent gyration. Hydrophobic effects were observed, but only for polymeric beads: lag times correlated negatively with contact angle of water and degree of protein adhesion (surface adhesion and hydrophobic effects were negligible for non-polymeric beads). These results demonstrate that contact forces (alone) explain kinetic variation among non-polymeric beads, whereas surface hydrophobicity and contact forces explain kinetic variation among polymeric beads. This study also establishes conditions for high-throughput amyloid assays of SOD1 that enable the control over fibril morphologies and produce eightfold faster lag times and fourfold less stochasticity than in previous studies.


Assuntos
Amiloide/química , Microesferas , Multimerização Proteica/efeitos dos fármacos , Rotação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Estrutura Secundária de Proteína , Superóxido Dismutase-1/química
2.
ACS Chem Neurosci ; 7(6): 799-810, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26979728

RESUMO

Recent reports suggest that the nucleation and propagation of oligomeric superoxide dismutase-1 (SOD1) is effectively stochastic in vivo and in vitro. This perplexing kinetic variability-observed for other proteins and frequently attributed to experimental error-plagues attempts to discern how SOD1 mutations and post-translational modifications linked to amyotrophic lateral sclerosis (ALS) affect SOD1 aggregation. This study used microplate fluorescence spectroscopy and dynamic light scattering to measure rates of fibrillar and amorphous SOD1 aggregation at high iteration (ntotal = 1.2 × 10(3)). Rates of oligomerization were intrinsically irreproducible and populated continuous probability distributions. Modifying reaction conditions to mimic random and systematic experimental error could not account for kinetic outliers in standard assays, suggesting that stochasticity is not an experimental artifact, rather an intrinsic property of SOD1 oligomerization (presumably caused by competing pathways of oligomerization). Moreover, mean rates of fibrillar and amorphous nucleation were not uniformly increased by mutations that cause ALS; however, mutations did increase kinetic noise (variation) associated with nucleation and propagation. The stochastic aggregation of SOD1 provides a plausible statistical framework to rationalize how a pathogenic mutation can increase the probability of oligomer nucleation within a single cell, without increasing the mean rate of nucleation across an entire population of cells.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Dissulfetos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Cobre/metabolismo , Humanos , Cinética , Mutação/genética , Processamento de Proteína Pós-Traducional/genética , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...