Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(9): 4299-4311, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364313

RESUMO

Transmetalation of the bis{triethylantimony(V)}-capped iron(II) tris-α-dioximate with n-butylboronic acid afforded the mixed antimony, boron cross-linked clathrochelate with single reactive antimony(V)-based apical fragment. This macrobicyclic precursor easily underwent the transmetalation reactions with germanium and titanium(IV) alkoxides to give the rod-like and angular FeII2MIV-trinuclear bis-clathrochelates. Those of the aforementioned diantimony(V)-capped complex with 3- and 4-carboxyphenylboronic acids afforded the monoboron-capped iron(II) semiclathrochelates, undergoing a double-cyclization (macrobicyclization) with germanium- and titanium(IV)-based capping agents. The reactions in the low-temperature range unexpectedly gave the stable 2:1 associates, formed by the bridging of two carboxyl-terminated macrobicyclic molecules of the mixed carboxylboron, triethylantimony-capped iron(II) clathrochelate with a triethylantimony(V)-based linker fragment. The obtained complexes were characterized using elemental analysis, MALDI-TOF, 1H and 13C{1H} NMR and UV-vis spectra, and single-crystal XRD experiments. The encapsulated iron(II) ion in their 3D-molecules is situated almost in the center of its FeN6-coordination polyhedron possessing a truncated trigonal-pyramidal geometry. Fe-N distances fall in the range 1.887(7)-1.945(4) Å characteristic of the low-spin iron(II) complexes. The cross-linking titanium and germanium(IV) ions in the corresponding bis-clathrochelate molecules form the octahedral MIVO6-coordination polyhedra, the MIV-O distances of which vary from 1.946(2) to 1.964(2) Å and from 1.879(7) to 1.907(6) Å, respectively.

2.
Phys Chem Chem Phys ; 25(28): 18679-18690, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37403572

RESUMO

Combined experimental 57Fe Mössbauer and theoretical DFT study of a series of iron(II)-centered (pseudo)macrobicyclic analogs and homologs was performed. The field strength of the corresponding (pseudo)encapsulating ligand was found to affect both the spin state of a caged iron(II) ion and the electron density at its nucleus. In a row of the iron(II) tris-dioximates, passing from the non-macrocyclic complex to its monocapped pseudomacrobicyclic analog caused an increase both in the ligand field strength and in the electron density at the Fe2+ ion, and, therefore, a decrease in the isomer shift (IS) value (so-called "semiclathrochelate effect"). Its macrobicyclization, giving the quasiaromatic cage complex, caused a further increase in the two former parameters and a decrease in IS (so-called "macrobicyclic effect"). The trend of their IS values was successfully predicted using the performed quantum-chemical calculations and the corresponding linear correlation with the electron density at their 57Fe nuclei was plotted. A variety of different functionals can be successfully used for such excellent prediction. The slope of this correlation was found to be unaffected by the used functional. In contrast, the predictions of both the sign and the values of quadrupole splitting (QS) for them, based on the theoretical calculations of EFG tensors, were found to be a real great challenge, which could not be solved at the moment even in the case of these C3-pseudosymmetric iron(II) complexes with known XRD structures. The latter experimental data allowed us to deduce a sign of the QSs for them. The straightforwarded molecular design of a (pseudo)encapsulating ligand is proposed to control both the spin state and the redox characteristics of an encapsulated metal ion.

3.
Dalton Trans ; 52(12): 3884-3895, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877091

RESUMO

A multistep general synthetic strategy towards polytopic carboranyl-containing (semi)clathrochelate metal complexes, based on the template synthesis, transmetallation, amide condensation and 1,3-dipolar cycloaddition reactions, is developed. Their mono(semi)clathrochelate precursors with a single reactive group were obtained using a transmetallation of the triethylantimony-capped macrobicyclic precursor. The thus obtained carboxyl-terminated iron(II) semiclathrochelate underwent a macrobicyclization with zirconium(IV) phthalocyaninate to form the corresponding phthalocyaninatoclathrochelate. The direct one-pot template condensation of the suitable chelating and cross-linking ligand synthons on the Fe2+ ion as a matrix was also used for its preparation. Further amide condensation of the aforementioned semiclathrochelate and hybrid complexes with propargylamine in the presence of carbonyldiimidazole gave the (pseudo)cage derivatives with a terminal CC bond. Their "click" reaction with an appropriate carboranylmethyl azide afforded the ditopic carboranosemiclathrochelates and the tritopic carboranyl-containing phthalocyaninatoclathrochelates with a flexible spacer fragment between their polyhedral entities. The obtained new complexes were characterized using elemental analysis, MALDI-TOF mass spectrometry, multinuclear NMR, and UV-vis spectroscopy, and by single crystal X-ray diffraction experiments. Their FeN6-coordination polyhedra show a truncated trigonal-pyramidal geometry, while the cross-linking heptacoordinate Zr4+ or Hf4+ cations in the hybrid compounds form the MIVN4O3-coordination polyhedra with the geometry of a capped trigonal prism.

4.
Dalton Trans ; 51(14): 5645-5659, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322826

RESUMO

Hybrid metallo(IV)phthalocyaninate-capped tris-dioximate iron(II) complexes (termed as "phthalocyaninatoclathrochelates") with non-equivalent apical fragments and functionalized with one terminal reactive vinyl group were prepared for the first time using three different synthetic approaches: (i) transmetallation (capping group exchange) of the appropriate labile boron,antimony-capped cage precursors, (ii) capping of the initially isolated reactive semiclathrochelate intermediate, and (iii) direct one-pot template condensation of their ligand synthons on the iron(II) ion as a matrix. The obtained polytopic cage complexes were characterized using elemental analysis, 1H NMR, MALDI-TOF MS and UV-vis spectra, and the single-crystal X-ray diffraction experiments. One of the obtained vinyl-terminated iron(II) phthalocyaninatoclathrochelates and its semiclathrochelate precursor were tested as monomers in a copolymerization reaction with styrene as the main component. These vinyl-terminated (semi)clathrochelate iron(II) complexes were found to be successfully copolymerized with this industrially important monomer, affording the intensely colored copolymer products. Because of a low solubility of the tested zirconium(IV) phthalocyaninate-capped tris-nioximate monomer in styrene as a solvent, a molar ratio of 1 : 500 was used. The obtained copolymer products and the kinetics of their formation were studied using GPC, FTIR, UV-vis, TGA and DSC methods. Even at such a low concentration of the Fe,Zr-binuclear metallocomplex component, an increase in the rate of the UV-light degradation of the organo-inorganic products, as well as in their thermal stability, was observed.

5.
Molecules ; 26(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198621

RESUMO

A synthetic strategy for obtaining structurally flexible hybrid iron(II) carboranoclatrochelates functionalized with biorelevant groups, based on a combination of a 1,3-dipolar cycloaddition reaction with nucleophilic substitution of an appropriate chloroclathrochelate precursor, was developed. In its first stage, a stepwise substitution of the dichloroclathrochelate precursor with amine N-nucleophiles of different natures in various solvents was performed. One of its two chlorine atoms with morpholine or diethylamine in dichloromethane gave reactive monohalogenoclathrochelate complexes functionalized with abiorelevant substituents. Further nucleophilic substitution of their remaining chlorine atoms with propargylamine in DMF led to morpholine- and diethylamine-functionalized monopropargylamine cage complexes, the molecules of which contain the single terminal C≡C bond. Their "click" 1,3-cycloaddition reactions in toluene with ortho-carborane-(1)-methylazide catalyzed by copper(II) acetate gave spacer-containing di- and tritopic iron(II) carboranoclatrochelates formed by a covalent linking between their different polyhedral(cage) fragments. The obtained complexes were characterized using elemental analysis, MALDI-TOF mass, UV-Vis, 1H, 1H{11B}, 11B, 11B{1H}, 19F{1H} and 13C{1H}-NMR spectra, and by a single crystal synchrotron X-ray diffraction experiment for the diethylamine-functionalized iron(II) carboranoclathrochelate. Its encapsulated iron(II) ion is situated almost in the center of the FeN6-coordination polyhedron possessing a geometry intermediate between a trigonal prism and a trigonal antiprism with a distortion angle φ of approximately 28°. Conformation of this hybrid molecule is strongly affected by its intramolecular dihydrogen bonding: a flexibility of the carborane-terminated ribbed substituent allowed the formation of numerous C-H…H-B intramolecular interactions. The H(C) atom of this carborane core also forms the intermolecular C-H…F-B interaction with an adjacent carboranoclathrochelate molecule. The N-H…N intermolecular interaction between the diethylamine group of one hybrid molecule and the heterocyclic five-membered 1H-[1,2,3]-triazolyl fragment of the second molecule of this type caused formation of H-bonded carboranoclathrochelate dimers in the X-rayed crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...