Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 50(5): 3039-3054, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36774531

RESUMO

INTRODUCTION: Radiotherapy deliveries with dynamic couch motions that shorten the source-to-axis distance (SAD) on a C-arm linac have the potential to increase treatment efficiency through the increase of the effective dose rate. In this investigation, we convert clinically deliverable volumetric modulated arc therapy (VMAT) and dynamic conformal arc (DCA) plans for cranial radiosurgery into virtual isocenter plans through implementation of couch trajectories that maintain the target at a shortened but variable SAD throughout treatment. MATERIALS AND METHODS: A randomly sampled population of patients treated with cranial radiosurgery from within the last three years were separated into groups with one, two, and three lesions. All plans had a single isocenter (regardless of number of targets), and a single prescription dose. Patient treatment plans were converted from their original delivery at a standard isocenter to a dynamic virtual isocenter in MATLAB. The virtual isocenter plan featured a variable isocenter position based upon the closest achievable source-to-target distance (referred to herein as a virtual source-to-axis distance [vSAD]) which avoided collision zones on a TrueBeam STx platform. Apertures were magnified according to the vSAD and monitor units at a given control point were scaled based on the inverse square law. Doses were calculated for the plans with a virtual isocenter in the Eclipse (v13.6.23) treatment planning system (TPS) and were compared with the clinical plans. Plan metrics (MU, Paddick conformity index, gradient index, and the volume receiving 12 Gy or more), normal brain dose-volume differences, as well as maximum doses received by organs at risk (OARs) were assessed. The values were compared between standard and virtual isocenter plans with Wilcoxon Sign Ranked tests to determine significance. A subset of the plans were mapped to the MAX-HD anthropomorphic phantom which contained an insert housing EBT3 GafChromic film and a PTW 31010 microion chamber for dose verification on a linac. RESULTS: Delivering plans at a virtual isocenter resulted in an average reduction of 20.9% (p = 3×10-6 ) and 20.6% (p = 3.0×10-6 ) of MUs across all VMAT and all DCA plans, respectively. There was no significant change in OAR max doses received by plans delivered at a virtual isocenter. The low dose wash (1.0-2.0 Gy or 5-11% of the prescription dose) was increased (by approximately 20 cc) for plans with three lesions. This was equivalent to a 2.7%-3.8% volumetric increase in normal tissue receiving the respective dose level when comparing the plan with a virtual isocenter to a plan with a standard isocenter. Gamma pass rates with a 5%/1mm analysis criteria were 96.40% ± 2.90% and 95.07% ± 3.10% for deliveries at standard and virtual isocenter, respectively. Absolute point dose agreements were within -0.36% ± 3.45% and -0.55% ± 3.39% for deliveries at a standard and virtual isocenter, respectively. Potential time savings per arc were found to have linear relationship with the monitor units delivered per arc (savings of 0.009 s/MU with an r2 = 0.866 when fit to plans with a single lesion). CONCLUSIONS: Converting clinical plans at standard isocenter to a virtual isocenter design did not show any losses to plan quality while simultaneously improving treatment efficiency through MU reductions.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Crânio , Encéfalo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Radioterapia de Intensidade Modulada/métodos
2.
J Appl Clin Med Phys ; 23(11): e13769, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36052995

RESUMO

PURPOSE: To automate the generation of region-of-interest (ROI) apertures for use with megavoltage imaging for online positional corrections during cranial stereotactic radiosurgery. MATERIALS AND METHODS: Digitally reconstructed radiographs (DRRs) were created for a 3D-printed skull phantom at 5 degree gantry angle increments for a three-arc beam arrangement. At each angle, 3000 random rectangular apertures were generated, and 100 shifts on a grid were applied to the anatomy within the frame. For all shifts, the mutual information (MI) between the shifted and unshifted DRR was calculated to derive an average MI gradient. The top 10% of apertures that minimized registration errors were overlaid and discretely thresholded to generate imaging plans. Imaging was acquired with the skull while implementing simulated patient motion on a linac. Control point-specific couch motions were derived to align the skull to its planned positioning. RESULTS: Apertures with a range of repositioning errors less than 0.1 mm possessed a 42% larger average MI gradient when compared with apertures with a range greater than 1 mm. Dose calculations with Monte Carlo exhibited an 84% reduction in the dose received by 50% of the skull with the 50% thresholded plan when compared to a constant 22 × 22 cm2 imaging plan. For all different imaging plans (with and without motion), the calculated median 3D-errors with respect to the tracking of a metal-BB fiducial positioned at isocenter in the skull were sub-mm except for the 80% thresholded plan. CONCLUSIONS: Sub-mm positional errors are achievable with couch motions derived from control point-specific ROI imaging. Smaller apertures that conform to an anatomical ROI can be utilized to minimize the imaging dose incurred at the expense of larger errors.


Assuntos
Radiocirurgia , Planejamento da Radioterapia Assistida por Computador , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radiocirurgia/métodos , Imagens de Fantasmas , Crânio/diagnóstico por imagem
3.
Biomed Phys Eng Express ; 8(5)2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35764061

RESUMO

Purpose.C-arm linac-based radiotherapy has seen a recent interest in 4πmethods of delivery using simultaneous rotations of couch and gantry to reduce doses to organs-at-risk (OARs) and increase dose compactness. While many methods use heuristics to generate trajectories that avoid OARs, combined with arbitrary trajectory restrictions to prevent oversampling, a quantity has not yet been developed to succinctly compare sampling of the 4πspace for candidate trajectories as a surrogate for dosimetric compactness.Methods.Evenly spaced sampling points were distributed across a 4πsphere centred on isocentre. A metric, mean arc distance (MAD), was defined that quantifies the average arc distance between all sampling points and their nearest field in a radiotherapy trajectory. The relationship between isodose volume and MAD was examined in 2,047 plans: 900 unique trajectories of fixed port DCA plans, 900 unique trajectories of contiguous field DCA plans, 192 VMAT plans (eight volumes in four locations, each with six trajectories) in matRad with 5 VMAT plans repeated for validation in a clinical planning system, and 10 clinical VMAT cases replanned with five trajectories in a clinical treatment planning system.Results.All isodose volumes greater than 10% of the prescription dose decreased with decreasing MAD in all comparisons. In the range of 10% to 100% of the prescription dose, the rate of isodose volume decrease was exponential as a function of MAD in all comparisons. Reduction of absolute isodose volume is seen with increased 4πsampling, with larger target volumes exhibiting larger absolute reductions. Very low isodoses (0% to 10% of prescription) increased with decreasing MAD.Conclusions.MAD is a 4πsampling quantity useful in quantifying the decrease of isodose volume, relevant for sparing normal tissues. By quantifying this feature, candidate dynamic trajectories can be efficiently compared for 4πsampling. This quantity is explored here for single target cranial radiotherapy but may have applications to other radiotherapy treatment sites.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Órgãos em Risco , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
4.
J Appl Clin Med Phys ; 22(8): 60-71, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34272811

RESUMO

PURPOSE: Intrafraction patient motion is a well-documented phenomenon in radiation therapy. In stereotactic radiosurgery applications in which target sizes can be very small and dose gradients very steep, patient motion can significantly impact the magnitude and positional accuracy of the delivered dose. This work investigates the impact of intrafraction motion on dose metrics for small targets when treated with a virtual cone. MATERIALS AND METHODS: Monte Carlo simulations were performed to calculate dose kernels for treatment apertures ranging from 1 × 2.5 mm2 to 10 × 10 mm2 . The phantom was an 8.2-cm diameter sphere and isotropic voxels had lengths of 0.25 mm. Simulated treatments consisted of 3 arcs: 1 axial arc (360° gantry rotation, couch angle 0°) and 2 oblique arcs (180° gantry rotation, couch angle ±45°). Dose distributions were calculated via superposition of the rotated kernels. Two different collimator orientations were considered to create a virtual cone: (a) each treatment arc was delivered twice, once each with a static collimator angle of ±45°, and (b) each treatment arc was delivered once, with dynamic collimator rotation throughout the arc. Two different intrafraction motion patterns were considered: (a) constant linear motion and (b) sudden, persistent motion. The impact of motion on dose distributions for target sizes ranging from 1 to 10 mm diameter spheres was quantified as a function of the aperture size used to treat the lesions. RESULTS: The impact of motion on both the target and the surrounding tissue was a function of both aperture shape and target size. When a 0.5-mm linear drift along each dimension occurred during treatment, targets ≥5 mm saw less than a 10% decrease in coverage by the prescription dose. Smaller apertures accrued larger penalties with respect to dosimetric hotspots seen in the tissues surrounding the target volume during intrafraction motion. For example, treating a 4-mm-sized target that undergoes 2.60 mm (3D vector) of continuous linear motion, the D5 in the concentric shells that extend 1, 2, and 3 mm from the surface of the target was 39%, 24%, and 14% smaller, respectively when comparing the delivery of a larger aperture (6 × 10 mm2 ) to a smaller aperture (2 × 5 mm2 ). Using a static collimator for shaping a virtual cone during treatment minimized the dosimetric impact of motion in the majority of cases. For example, the volume that is covered by 70% or more of the prescription dose is smaller in 60.4% of cases when using the static collimator. The volume covered by 50, and 30% or more of the prescription dose is also smaller when treating with a static collimator, but the clinical significance of this finding is unknown. CONCLUSIONS: In this work, the dosimetric trade-offs between aperture size and target size when irradiating with virtual cones has been demonstrated. These findings provide information about the tradeoffs between target coverage and normal tissue sparing that may help inform clinical decision making when treating smaller targets with virtual cones.


Assuntos
Radiometria , Radiocirurgia , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Rotação
5.
Phys Med ; 58: 21-31, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30824146

RESUMO

PURPOSE: Pre-clinical irradiation systems use kilovoltage x-ray systems to deliver small fields of radiation in static beam arrangements or arcs. The systems are costly and the radiobiological effectiveness of kilovoltage beams is known to differ from the megavoltage photon beams used clinically. This work used Developer mode on the Varian TrueBeam STx linear accelerator to create a pre-clinical irradiator capable of treating millimeter-sized targets. MATERIALS AND METHODS: A treatment field defined by a single opposed leaf pair was used to deliver arc-based treatments. Dynamic couch trajectories were used to create a shortened virtual isocentre. Initially, a pre-treatment imaging procedure was used to quantify target misalignment at control points along the arcs and determine appropriate couch positional corrections. This was followed by the treatment arcs in which the positional corrections were implemented. Monte Carlo simulations and radiochromic film were used to calculate and measure dose distributions. RESULTS: A 1 mm leaf separation produced the optimal dose distributions. Couch position corrections up to 2.1 mm were required to maintain a target at virtual isocentre. Application of couch corrections reduced non-coplanar arc treatments dose profile by 1.2 mm at 30% of the maximum dose. Treatment of a 1 mm diameter target would result in falloff distances to the 80%, 50% and 25% of the 90% prescription line of 0.3 mm, 0.5 mm and 1.3 mm from the target edge respectively. CONCLUSIONS: This work has demonstrated that it is possible to deliver highly compact dose distributions using megavoltage photon beams from existing clinical infrastructure.


Assuntos
Radioterapia Assistida por Computador/instrumentação , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Planejamento da Radioterapia Assistida por Computador
6.
Med Phys ; 45(2): 934-942, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29206288

RESUMO

PURPOSE: Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. METHODS: Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. RESULTS: Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 µm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the microspheres based on weighted activities. The shapes of the absorbed dose kernels are dominated at short times postactivation by the contributions of 70 Ga and 72 Ga. Following decay of the short-lived contaminants, the absorbed dose kernel is effectively that of 90 Y. After approximately 1000 h postactivation, the contributions of 85 Sr and 89 Sr become increasingly dominant, though the absorbed dose-rate around the beads drops by roughly four orders of magnitude. CONCLUSIONS: The introduction of high atomic number elements for the purpose of increasing radiopacity necessarily leads to the production of radionuclides other than 90 Y in the microspheres. Most of the radionuclides in this study are short-lived and are likely not of any significant concern for this therapeutic agent. The presence of small quantities of longer lived radionuclides will change the shape of the absorbed dose kernel around a microsphere at long time points postadministration when activity levels are significantly reduced.


Assuntos
Artérias , Embolização Terapêutica/métodos , Vidro , Microesferas , Proteção Radiológica , Embolização Terapêutica/efeitos adversos , Método de Monte Carlo , Fenômenos Ópticos , Radiometria , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...