Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; : e0077024, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980051

RESUMO

Microorganisms grow despite imbalances in the availability of nutrients and energy. The biochemical and elemental adjustments that bacteria employ to sustain growth when these resources are suboptimal are not well understood. We assessed how Pseudomonas putida KT2440 adjusts its physiology at differing dilution rates (to approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) stress using chemostats. Cellular elemental and biomolecular pools were variable in response to different limiting resources at a slow dilution rate of 0.12 h-1, but these pools were more similar across treatments at a faster rate of 0.48 h-1. At slow dilution rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by changes in cellular C quotas and rates of oxygen consumption, both of which were highest under P- and lowest under C- stress. Underlying these phenotypic changes was differential gene expression of terminal oxidases used for ATP generation that allows for increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 formed aggregates and biofilms, a physiological response that hindered an accurate assessment of growth rate, but which could serve as a mechanism that allows cells to remain in conditions where growth is favorable. Our findings highlight the ways that microorganisms dynamically adjust their physiology under different resource supply conditions, with distinct mechanisms depending on the limiting resource at slow growth and convergence toward an aggregative phenotype with similar compositions under conditions that attempt to force fast growth. IMPORTANCE: All organisms experience suboptimal growth conditions due to low nutrient and energy availability. Their ability to survive and reproduce under such conditions determines their evolutionary fitness. By imposing suboptimal resource ratios under different dilution rates on the model organism Pseudomonas putida KT2440, we show that this bacterium dynamically adjusts its elemental composition, morphology, pools of biomolecules, and levels of gene expression. By examining the ability of bacteria to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility manifests at the cellular level and impacts the flow of energy and elements through ecosystems.

2.
Environ Microbiol ; 26(3): e16616, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517638

RESUMO

Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) Nitrotoga dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.


Assuntos
Lagos , Nitrosomonadaceae , Lagos/microbiologia , Estações do Ano , Ecossistema , Amônia , Oxirredução , Archaea/genética , Nitrificação , Nitritos , Nitrogênio , Dinâmica Populacional , Filogenia
3.
J Phycol ; 60(2): 418-431, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38196398

RESUMO

With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green alga Chlamydomonas reinhardtii adjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed that Chlamydomonas exhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential of Chlamydomonas in a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure.


Assuntos
Chlamydomonas reinhardtii , Clorófitas , Chlamydomonas reinhardtii/metabolismo , Clorófitas/metabolismo , Fotossíntese , Carboidratos , Lipídeos , Nitrogênio/metabolismo , Fósforo/metabolismo
4.
Appl Environ Microbiol ; 89(12): e0109723, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38032216

RESUMO

IMPORTANCE: Methane is an important greenhouse gas that is typically produced under anoxic conditions. We show that methane is supersaturated in a large oligotrophic lake despite the presence of oxygen. Metagenomic sequencing indicates that diverse, widespread microorganisms may contribute to the oxic production of methane through the cleavage of methylphosphonate. We experimentally demonstrate that these organisms, especially members of the genus Acidovorax, can produce methane through this process. However, appreciable rates of methane production only occurred when both methylphosphonate and labile sources of carbon were added, indicating that this process may be limited to specific niches and may not be completely responsible for methane concentrations in Flathead Lake. This work adds to our understanding of methane dynamics by describing the organisms and the rates at which they can produce methane through an oxic pathway in a representative oligotrophic lake.


Assuntos
Carbono , Lagos , Compostos Organofosforados/metabolismo , Metano/metabolismo
5.
Sci Adv ; 8(51): eadd2475, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542698

RESUMO

Annually, marine phytoplankton convert approximately 50 billion tons of dissolved inorganic carbon to particulate and dissolved organic carbon, a portion of which is exported to depth via the biological carbon pump. Despite its important roles in regulating atmospheric carbon dioxide via carbon sequestration and in sustaining marine ecosystems, model-projected future changes in marine net primary production are highly uncertain even in the sign of the change. Here, using an Earth system model, we show that frugal utilization of phosphorus by phytoplankton under phosphate-stressed conditions can overcompensate the previously projected 21st century declines due to ocean warming and enhanced stratification. Our results, which are supported by observations from the Hawaii Ocean Time-series program, suggest that nutrient uptake plasticity in the subtropical ocean plays a key role in sustaining phytoplankton productivity and carbon export production in a warmer world.

6.
Ecol Lett ; 25(10): 2324-2339, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36089849

RESUMO

The growth rate hypothesis (GRH) posits that variation in organismal stoichiometry (C:P and N:P ratios) is driven by growth-dependent allocation of P to ribosomal RNA. The GRH has found broad but not uniform support in studies across diverse biota and habitats. We synthesise information on how and why the tripartite growth-RNA-P relationship predicted by the GRH may be uncoupled and outline paths for both theoretical and empirical work needed to broaden the working domain of the GRH. We found strong support for growth to RNA (r2  = 0.59) and RNA-P to P (r2  = 0.63) relationships across taxa, but growth to P relationships were relatively weaker (r2  = 0.09). Together, the GRH was supported in ~50% of studies. Mechanisms behind GRH uncoupling were diverse but could generally be attributed to physiological (P accumulation in non-RNA pools, inactive ribosomes, translation elongation rates and protein turnover rates), ecological (limitation by resources other than P), and evolutionary (adaptation to different nutrient supply regimes) causes. These factors should be accounted for in empirical tests of the GRH and formalised mathematically to facilitate a predictive understanding of growth.


Assuntos
Nitrogênio , Fósforo , Evolução Biológica , Ecossistema , Nitrogênio/metabolismo , Fósforo/metabolismo , RNA Ribossômico
7.
Proc Natl Acad Sci U S A ; 119(30): e2202268119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858403

RESUMO

Considerable attention is given to absolute nutrient levels in lakes, rivers, and oceans, but less is paid to their relative concentrations, their nitrogen:phosphorus (N:P) stoichiometry, and the consequences of imbalanced stoichiometry. Here, we report 38 y of nutrient dynamics in Flathead Lake, a large oligotrophic lake in Montana, and its inflows. While nutrient levels were low, the lake had sustained high total N: total P ratios (TN:TP: 60 to 90:1 molar) throughout the observation period. N and P loading to the lake as well as loading N:P ratios varied considerably among years but showed no systematic long-term trend. Surprisingly, TN:TP ratios in river inflows were consistently lower than in the lake, suggesting that forms of P in riverine loading are removed preferentially to N. In-lake processes, such as differential sedimentation of P relative to N or accumulation of fixed N in excess of denitrification, likely also operate to maintain the lake's high TN:TP ratios. Regardless of causes, the lake's stoichiometric imbalance is manifested in P limitation of phytoplankton growth during early and midsummer, resulting in high C:P and N:P ratios in suspended particulate matter that propagate P limitation to zooplankton. Finally, the lake's imbalanced N:P stoichiometry appears to raise the potential for aerobic methane production via metabolism of phosphonate compounds by P-limited microbes. These data highlight the importance of not only absolute N and P levels in aquatic ecosystems, but also their stoichiometric balance, and they call attention to potential management implications of high N:P ratios.


Assuntos
Ecossistema , Lagos , Nitrogênio , Fósforo , Fitoplâncton , Zooplâncton , Animais , China , Monitoramento Ambiental , Eutrofização , Lagos/química , Lagos/microbiologia , Metano/biossíntese , Nitrogênio/análise , Nitrogênio/metabolismo , Organofosfonatos/metabolismo , Fósforo/análise , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/metabolismo
8.
Microbiol Resour Announc ; 11(2): e0111221, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35112901

RESUMO

Five metagenome-assembled genomes were obtained from the bottom waters of Echo Lake, Montana. These genomes suggest that lineages involved in methane oxidation and sulfur cycling flourish near the steep oxygen and methane chemocline in Echo Lake.

9.
Wilderness Environ Med ; 32(3): 332-339, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34172374

RESUMO

INTRODUCTION: Human activity in wilderness areas has the potential to affect aquatic ecosystems, including through the introduction of microorganisms associated with fecal contamination. We examined fecal microorganism contamination in water sources (lake outlets, snowmelt streams) in the popular Absaroka Beartooth Wilderness in the United States. Although the region is remote, increasing human visitation has the potential to negatively affect water quality, with particular concern about human-derived microorganism fecal contaminants. METHODS: We used standard fecal indicator bacterial assays that quantified total coliform bacteria and Escherichia coli concentrations, together with more specific polymerase chain reaction-based microbial assays that identified possible human sources of fecal microorganisms in these waters. RESULTS: Total coliforms were detected at all lake outlets (21 of 21 sites), and E coli was detected at 11 of 21 sites. Droplet digital polymerase chain reaction assays revealed the presence of human feces-derived microorganisms, albeit at abundances below the limit of detection (<10 gene copies per milliliter of water) at all but 1 of the sampling sites. CONCLUSIONS: Our results suggest low prevalence of water-borne pathogens (specifically E coli and human-derived Bacteroides) in this popular wilderness area. However, widespread detection of total coliforms, Bacteroides, and E coli highlight the importance of purifying water sources in wilderness areas before consumption. Specific sources of total coliforms and E coli in these waters remain unknown but could derive from wild or domesticated animals that inhabit or visit the Absaroka Beartooth Wilderness. Hence, although contamination by human fecal microorganisms appears minimal, human visitation could indirectly influence fecal contamination through domesticated animals.


Assuntos
Microbiologia da Água , Meio Selvagem , Animais , Bactérias/genética , Ecossistema , Monitoramento Ambiental , Escherichia coli , Fezes , Humanos , Reação em Cadeia da Polimerase
10.
Nat Commun ; 10(1): 4618, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601794

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Proc Natl Acad Sci U S A ; 116(26): 12720-12728, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31182581

RESUMO

The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration. Here, we report multidecadal observations revealing that the ecosystem in the eastern region of the North Pacific Subtropical Gyre (NPSG) oscillates on subdecadal scales between inorganic phosphorus (P i ) sufficiency and limitation, when P i concentration in surface waters decreases below 50-60 nmol⋅kg-1 In situ observations and model simulations suggest that sea-level pressure changes over the northwest Pacific may induce basin-scale variations in the atmospheric transport and deposition of Asian dust-associated iron (Fe), causing the eastern portion of the NPSG ecosystem to shift between states of Fe and P i limitation. Our results highlight the critical need to include both atmospheric and ocean circulation variability when modeling the response of open ocean pelagic ecosystems under future climate change scenarios.


Assuntos
Ecossistema , Ferro/química , Fósforo/química , Organismos Aquáticos/crescimento & desenvolvimento , Organismos Aquáticos/metabolismo , Ciclo do Carbono , Ferro/metabolismo , Deficiências de Ferro , Microbiota , Oceano Pacífico , Periodicidade , Fósforo/deficiência , Fósforo/metabolismo , Clima Tropical
12.
mSystems ; 4(4)2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117027

RESUMO

In this study, a strain of SAR11 subgroup IIIa (termed HIMB114) was grown in seawater-based batch and continuous culture in order to quantify cellular features and metabolism relevant to SAR11 ecology. We report some of the first direct measurements of cellular elemental quotas for nitrogen (N) and phosphorus (P) for SAR11, grown in batch culture: 1.4 ± 0.9 fg N and 0.44 ± 0.01 fg P, respectively, that were consistent with the small size of HIMB114 cells (average volume of 0.09 µm3). However, the mean carbon (C) cellular quota of 50 ± 47 fg C was anomalously high, but variable. The rates of phosphate (PO4 3-) uptake measured from both batch and continuous cultures were exceptionally slow: in chemostats growing at 0.3 day-1, HIMB114 took up 1.1 ± 0.3 amol P cell-1 day-1, suggesting that <30% of the cellular P requirement of HIMB114 was met by PO4 3- assimilation. The mean rate of leucine incorporation, a measure of bacterial production, during late-log-phase growth of batch HIMB114 cultures was 0.042 ± 0.02 amol Leu cell-1 h-1 While only weakly correlated with changes in specific growth rates, the onset of stationary phase resulted in decreases in cell-specific leucine incorporation that were proportional to changes in growth rate. The rates of cellular production, respiratory oxygen consumption, and changes in total organic C concentrations constrained cellular growth efficiencies to 13% ± 4%. Hence, despite a small genome and diminutively sized cells, SAR11 strain HIMB114 appears to grow at efficiencies similar to those of naturally occurring bacterioplankton communities.IMPORTANCE While SAR11 bacteria contribute a significant fraction to the total picoplankton biomass in the ocean and likely are major players in organic C and nutrient cycling, the cellular characteristics and metabolic features of most lineages have either only been hypothesized from genomes or otherwise not measured in controlled laboratory experimentation. The dearth of data on even the most basic characteristics for what is arguably the most abundant heterotroph in seawater has limited the specific consideration of SAR11 in ocean ecosystem modeling efforts. In this study, we provide measures of cellular P, N, and C, aerobic respiration, and bacterial production for a SAR11 strain growing in natural seawater medium that can be used to directly relate these features of SAR11 to biogeochemical cycling in the oceans. Through the development of a chemostat system to measure nutrient uptake during steady-state growth, we have also documented inorganic P uptake rates that allude to the importance of organic phosphorous to meet cellular P demands, even in the presence of nonlimiting PO4 3- concentrations.

13.
PLoS One ; 13(4): e0195102, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621268

RESUMO

Hadal trenches, oceanic locations deeper than 6,000 m, are thought to have distinct microbial communities compared to those at shallower depths due to high hydrostatic pressures, topographical funneling of organic matter, and biogeographical isolation. Here we evaluate the hypothesis that hadal trenches contain unique microbial biodiversity through analyses of the communities present in the bottom waters of the Kermadec and Mariana trenches. Estimates of microbial protein production indicate active populations under in situ hydrostatic pressures and increasing adaptation to pressure with depth. Depth, trench of collection, and size fraction are important drivers of microbial community structure. Many putative hadal bathytypes, such as members related to the Marinimicrobia, Rhodobacteraceae, Rhodospirilliceae, and Aquibacter, are similar to members identified in other trenches. Most of the differences between the two trench microbiomes consists of taxa belonging to the Gammaproteobacteria whose distributions extend throughout the water column. Growth and survival estimates of representative isolates of these taxa under deep-sea conditions suggest that some members may descend from shallower depths and exist as a potentially inactive fraction of the hadal zone. We conclude that the distinct pelagic communities residing in these two trenches, and perhaps by extension other trenches, reflect both cosmopolitan hadal bathytypes and ubiquitous genera found throughout the water column.


Assuntos
Sedimentos Geológicos/microbiologia , Microbiota , Oceanos e Mares , Microbiologia da Água , Adaptação Biológica , Biodiversidade , Pressão Hidrostática , Metagenoma , Metagenômica/métodos
14.
PLoS One ; 13(4): e0193405, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694353

RESUMO

We conducted a series of experiments to examine short-term (2-5 days) effects of abrupt increases in the partial pressure of carbon dioxide (pCO2) in seawater on rates of primary and bacterial production at Station ALOHA (22°45' N, 158° W) in the North Pacific Subtropical Gyre (NPSG). The majority of experiments (8 of 10 total) displayed no response in rates of primary production (measured by 14C-bicarbonate assimilation; 14C-PP) under elevated pCO2 (~1100 µatm) compared to ambient pCO2 (~387 µatm). In 2 of 10 experiments, rates of 14C-PP decreased significantly (~43%) under elevated pCO2 treatments relative to controls. Similarly, no significant differences between treatments were observed in 6 of 7 experiments where bacterial production was measured via incorporation of 3H-leucine (3H-Leu), while in 1 experiment, rates of 3H-Leu incorporation measured in the dark (3H-LeuDark) increased more than 2-fold under high pCO2 conditions. We also examined photoperiod-length, depth-dependent (0-125 m) responses in rates of 14C-PP and 3H-Leu incorporation to abrupt pCO2 increases (to ~750 µatm). In the majority of these depth-resolved experiments (4 of 5 total), rates of 14C-PP demonstrated no consistent response to elevated pCO2. In 2 of 5 depth-resolved experiments, rates of 3H-LeuDark incorporation were lower (10% to 15%) under elevated pCO2 compared to controls. Our results revealed that rates of 14C-PP and bacterial production in this persistently oligotrophic habitat generally demonstrated no or weak responses to abrupt changes in pCO2. We postulate that any effects caused by changes in pCO2 may be masked or outweighed by the role that nutrient availability and temperature play in controlling metabolism in this ecosystem.


Assuntos
Dióxido de Carbono/análise , Ecossistema , Plâncton/crescimento & desenvolvimento , Água do Mar/química , Oceano Pacífico , Temperatura
15.
Nat Commun ; 9(1): 1206, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572474

RESUMO

Microorganisms oxidize organic nitrogen to nitrate in a series of steps. Nitrite, an intermediate product, accumulates at the base of the sunlit layer in the subtropical ocean, forming a primary nitrite maximum, but can accumulate throughout the sunlit layer at higher latitudes. We model nitrifying chemoautotrophs in a marine ecosystem and demonstrate that microbial community interactions can explain the nitrite distributions. Our theoretical framework proposes that nitrite can accumulate to a higher concentration than ammonium because of differences in underlying redox chemistry and cell size between ammonia- and nitrite-oxidizing chemoautotrophs. Using ocean circulation models, we demonstrate that nitrifying microorganisms are excluded in the sunlit layer when phytoplankton are nitrogen-limited, but thrive at depth when phytoplankton become light-limited, resulting in nitrite accumulation there. However, nitrifying microorganisms may coexist in the sunlit layer when phytoplankton are iron- or light-limited (often in higher latitudes). These results improve understanding of the controls on nitrification, and provide a framework for representing chemoautotrophs and their biogeochemical effects in ocean models.

16.
Environ Microbiol Rep ; 10(2): 113-122, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411533

RESUMO

Deep-sea mining of commercially valuable polymetallic nodule fields will generate a seabed sediment plume into the water column. Yet, the response of bacterioplankton communities, critical in regulating energy and matter fluxes in marine ecosystems, to such disturbances is unknown. Metacommunity theory, traditionally used in general ecology for macroorganisms, offers mechanistic understanding on the relative role of spatial differences compared with local environmental conditions (habitat filtering) for community assembly. We examined bacterioplankton metacommunities using 16S rRNA amplicons from the Clarion-Clipperton Zone (CCZ) in the eastern Pacific Ocean and in global ocean transect samples to determine sensitivity of these assemblages to environmental perturbations. Habitat filtering was the main assembly mechanism of bacterioplankton community composition in the epi- and mesopelagic waters of the CCZ and the Tara Oceans transect. Bathy- and abyssopelagic bacterioplankton assemblages were mainly assembled by undetermined metacommunity types or neutral and dispersal-driven patch-dynamics for the CCZ and the Malaspina transect. Environmental disturbances may alter the structure of upper-ocean microbial assemblages, with potentially even more substantial, yet unknown, impact on deep-sea communities. Predicting such responses in bacterioplankton assemblage dynamics can improve our understanding of microbially-mediated regulation of ecosystem services in the abyssal seabed likely to be exploited by future deep-sea mining operations.


Assuntos
Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Bactérias/classificação , Bactérias/genética , Biodiversidade , Ecossistema , Sedimentos Geológicos/análise , Oceano Pacífico , Filogenia
17.
Front Microbiol ; 8: 1780, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28947897

RESUMO

[This corrects the article on p. 1122 in vol. 8, PMID: 28729854.].

18.
Front Microbiol ; 8: 1696, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28943866

RESUMO

Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m) in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity) affiliated with JTB255 (Gammaproteobacteria) and Rhodospirillaceae (Alphaproteobacteria) had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.

19.
Nat Microbiol ; 2: 17118, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-28758990

RESUMO

The temporal dynamics of phytoplankton growth and activity have large impacts on fluxes of matter and energy, yet obtaining in situ metabolic measurements of sufficient resolution for even dominant microorganisms remains a considerable challenge. We performed Lagrangian diel sampling with synoptic measurements of population abundances, dinitrogen (N2) fixation, mortality, productivity, export and transcription in a bloom of Crocosphaera over eight days in the North Pacific Subtropical Gyre (NPSG). Quantitative transcriptomic analyses revealed clear diel oscillations in transcript abundances for 34% of Crocosphaera genes identified, reflecting a systematic progression of gene expression in diverse metabolic pathways. Significant time-lagged correspondence was evident between nifH transcript abundance and maximal N2 fixation, as well as sepF transcript abundance and cell division, demonstrating the utility of transcriptomics to predict the occurrence and timing of physiological and biogeochemical processes in natural populations. Indirect estimates of carbon fixation by Crocosphaera were equivalent to 11% of net community production, suggesting that under bloom conditions this diazotroph has a considerable impact on the wider carbon cycle. Our cross-scale synthesis of molecular, population and community-wide data underscores the tightly coordinated in situ metabolism of the keystone N2-fixing cyanobacterium Crocosphaera, as well as the broader ecosystem-wide implications of its activities.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio/genética , Nitrogênio/metabolismo , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Carbono/metabolismo , Ciclo do Carbono , Cianobactérias/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Oceano Pacífico
20.
Front Microbiol ; 8: 1122, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28729854

RESUMO

Filamentous diazotrophic Cyanobacteria of the genus Trichodesmium, often found in colonial form, provide an important source of new nitrogen to tropical and subtropical marine ecosystems. Colonies are composed of several clades of Trichodesmium in association with a diverse community of bacterial and eukaryotic epibionts. We used high-throughput 16S rRNA and nifH gene sequencing, carbon (C) and dinitrogen (N2) fixation assays, and metagenomics to describe the diversity and functional potential of the microbiome associated with Trichodesmium colonies collected from the North Pacific Subtropical Gyre (NPSG). The 16S rRNA and nifH gene sequences from hand-picked colonies were predominantly (>99%) from Trichodesmium Clade I (i.e., T. thiebautii), which is phylogenetically and ecologically distinct from the Clade III IMS101 isolate used in most laboratory studies. The bacterial epibiont communities were dominated by Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria, including several taxa with a known preference for surface attachment, and were relatively depleted in the unicellular Cyanobacteria and small photoheterotrophic bacteria that dominate NPSG surface waters. Sequencing the nifH gene (encoding a subcomponent of the nitrogenase enzyme) identified non-Trichodesmium diazotrophs that clustered predominantly among the Cluster III nifH sequence-types that includes putative anaerobic diazotrophs. Trichodesmium colonies may represent an important habitat for these Cluster III diazotrophs, which were relatively rare in the surrounding seawater. Sequence analyses of nifH gene transcripts revealed several cyanobacterial groups, including heterocystous Richelia, associated with the colonies. Both the 16S rRNA and nifH datasets indicated strong differences between Trichodesmium epibionts and picoplankton in the surrounding seawater, and also between the epibionts inhabiting Trichodesmium puff and tuft colony morphologies. Metagenomic and 16S rRNA gene sequence analyses suggested that lineages typically associated with a copiotrophic lifestyle comprised a large fraction of colony-associated epibionts, in contrast to the streamlined genomes typical of bacterioplankton in these oligotrophic waters. Additionally, epibiont metagenomes were enriched in specific genes involved in phosphate and iron acquisition and denitrification pathways relative to surface seawater metagenomes. We propose that the unique microbial consortium inhabiting colonies has a significant impact on the biogeochemical functioning of Trichodesmium colonies in pelagic environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...