Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 117(6): 1125-1135, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31477241

RESUMO

Intrinsically disordered proteins often play an important role in protein aggregation. However, it is challenging to determine the structures and interactions that drive the early stages of aggregation because they are transient and obscured in a heterogeneous mixture of disordered states. Even computational methods are limited because the lack of ordered structure makes it difficult to ensure that the relevant conformations are sampled. We address these challenges by integrating atomistic simulations with high-resolution single-molecule measurements reported previously, using the measurements to help discern which parts of the disordered ensemble of structures in the simulations are most probable while using the simulations to identify residues and interactions that are important for oligomer stability. This approach was applied to α-synuclein, an intrinsically disordered protein that aggregates in the context of Parkinson's disease. We simulated single-molecule pulling experiments on dimers, the minimal oligomer, and compared them to force spectroscopy measurements. Force-extension curves were simulated starting from a set of 66 structures with substantial structured content selected from the ensemble of dimer structures generated at zero force via Monte Carlo simulations. The pattern of contour length changes as the structures unfolded through intermediate states was compared to the results from optical trapping measurements on the same dimer to discern likely structures occurring in the measurements. Simulated pulling curves were generally consistent with experimental data but with a larger number of transient intermediates. We identified an ensemble of ß-rich dimer structures consistent with the experimental data from which dimer interfaces could be deduced. These results suggest specific druggable targets in the structural motifs of α-synuclein that may help prevent the earliest steps of oligomerization.


Assuntos
Simulação de Dinâmica Molecular , Agregados Proteicos , Imagem Individual de Molécula , alfa-Sinucleína/química , Fenômenos Biomecânicos , Método de Monte Carlo , Multimerização Proteica , Estrutura Secundária de Proteína
2.
iScience ; 11: 42-56, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30590250

RESUMO

The emerging field of bioelectricity has revealed numerous new roles for ion channels beyond the nervous system, which can be exploited for applications in regenerative medicine. Developing such biomedical interventions for birth defects, cancer, traumatic injury, and bioengineering first requires knowledge of ion channel targets expressed in tissues of interest. This information can then be used to select combinations of small molecule inhibitors and/or activators that manipulate the bioelectric state. Here, we provide an overview of electroceutical design environment (EDEn), the first bioinformatic platform that facilitates the design of such therapeutic strategies. This database includes information on ion channels and ion pumps, linked to known chemical modulators and their properties. The database also provides information about the expression levels of the ion channels in over 100 tissue types. The graphical interface allows the user to readily identify chemical entities that can alter the electrical properties of target cells and tissues.

3.
Oncotarget ; 7(26): 40518-40530, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27777381

RESUMO

Noscapine, a naturally occurring opium alkaloid, is a widely used antitussive medication. Noscapine has low toxicity and recently it was also found to possess cytotoxic activity which led to the development of many noscapine analogues. In this paper we report on the synthesis and testing of a novel noscapine analogue. Cytotoxicity was assessed by MTT colorimetric assay using SKBR-3 and paclitaxel-resistant SKBR-3 breast cancer cell lines using different concentrations for both noscapine and the novel compound. Microtubule polymerization assay was used to determine the effect of the new compound on microtubules. To compare the binding affinity of noscapine and the novel compound to tubulin, we have done a fluorescence quenching assay. Finally, in silico methods using docking calculations were used to illustrate the binding mode of the new compound to α,ß-tubulin. Our cytotoxicity results show that the new compound is more cytotoxic than noscapine on both SKBR-3 cell lines. This was confirmed by the stronger binding affinity of the new compound, compared to noscapine, to tubulin. Surprisingly, our new compound was found to have strong microtubule-destabilizing properties, while noscapine is shown to slightly stabilize microtubules. Our calculation indicated that the new compound has more binding affinity to the colchicine-binding site than to the noscapine site. This novel compound has a more potent cytotoxic effect on cancer cell lines than its parent, noscapine, and hence should be of interest as a potential anti-cancer drug.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Noscapina/análogos & derivados , Alcaloides/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Cinética , Microtúbulos/efeitos dos fármacos , Modelos Moleculares , Noscapina/química , Paclitaxel/farmacologia , Ligação Proteica , Tubulina (Proteína)/metabolismo
4.
J Phys Chem B ; 120(7): 1195-204, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26830475

RESUMO

Four uracil-containing intrastrand cross-links have been detected in human cells upon UV irradiation of 5-bromouracil-containing DNA, namely 5'-G[8-5]U-3', 5'-U[5-8]G-3', 5'-A[8-5]U-3', and 5'-A[2-5]U-3'. These lesions feature unique composition and connectivity compared with other intrastrand cross-links reported in the literature. For the first time, structural information obtained using molecular dynamics (MD) simulations reveal that all four lesions distort the DNA helix, which can involve an extrahelical location of the cross-link, changes in the helical interactions of the complementary nucleotides, or disruption of hydrogen bonding in the flanking base pairs up to two positions from the cross-linked site; however, the degree of distortion varies between the cross-links, being affected by the sequence, nucleobase-nucleobase connectivity, and the purine involved. Most importantly, the relative distortion of the damaged DNA provides the first structural explanation for the observed abundances of the four uracil-containing cross-links. Furthermore, the highly distorted conformations suggest that these lesions will likely have severe implications for DNA replication and repair processes in cells.


Assuntos
Bromouracila/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Adutos de DNA/química , Uracila/química , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos da radiação , Raios Ultravioleta
5.
J Biomol Struct Dyn ; 34(7): 1455-69, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26230757

RESUMO

Laulimalide (LA) is a microtubule-stabilizing agent, currently in preclinical studies. However, studying the binding of this species and successfully synthesizing potent analogues have been challenging. The LA binding site is located between tubulin protofilaments, and therefore LA is in contact with two adjacent [Formula: see text]-tubulin units. Here, an improved model of the binding mode of LA in microtubules is presented, using the newly available crystal structure pose and an extended tubulin heterodimer complex, as well as molecular dynamics simulations. With this model, a series of LA analogues developed by Mooberry and coworkers are also analyzed in order to establish important pharmacophores in LA binding and cytotoxicity. In the side chain, [Formula: see text]-[Formula: see text] interactions are important contributors to LA binding, as are water-mediated hydrogen bonds. An intramolecular hydrogen bond is correlated with high cytotoxicity, and is dependent on macrocycle conformation. Therefore, while the epoxide and olefin groups in the macrocycle do not engage in specific interactions with the protein, they are essential contributions to an active macrocycle conformation, and therefore potency. Calculations reveal that a balance in binding affinity is important for LA activity, where the more potent compounds have larger interactions with the adjacent tubulin unit than the less-active analogs. Several modifications are suggested for the rational design of LA analogues that should not disrupt the active macrocycle conformation.


Assuntos
Macrolídeos/química , Microtúbulos/química , Modelos Moleculares , Antineoplásicos/química , Humanos , Ligação de Hidrogênio , Ligantes , Macrolídeos/metabolismo , Microtúbulos/metabolismo , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica
6.
Chem Biol Drug Des ; 86(5): 1253-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26032329

RESUMO

The clinically approved taxanes (paclitaxel, docetaxel and cabazitaxel) target the tubulin protein in microtubules. Despite the clinical success of these agents, the mechanism of action of this class of drugs remains elusive, making rational design of taxanes difficult. Molecular dynamics simulations of these three taxanes with the αß-tubulin heterodimer examine the similarities and differences in the effects of the drugs on tubulin, probing both local and allosteric effects. Despite their structural similarity, the drugs adopt different conformations in the binding site on ß-tubulin. The taxanes similarly increase the helical character of α- and ß-tubulins. No correlations are found between microtubule assembly and (i) binding affinity or (ii) the role of the M-loop in enhancing lateral contacts. Instead, changes in intra- and interdimer longitudinal contacts are indicative of the mechanism of action of the taxanes. We find ß:H1-S1', and more importantly ß:H9 and ß:H10, play a role translating the effect of local drug binding in ß-tubulin to an allosteric effect in α-tubulin and propose that the displacement of these secondary structures towards α-tubulin may be used as a predictor of the effect of taxanes on the tubulin heterodimers in rational drug design approaches.


Assuntos
Paclitaxel/farmacologia , Taxoides/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Sítio Alostérico/efeitos dos fármacos , Docetaxel , Humanos , Microtúbulos/química , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Paclitaxel/química , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos , Taxoides/química , Tubulina (Proteína)/química , Moduladores de Tubulina/química
7.
Cell Physiol Biochem ; 36(3): 1069-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26112900

RESUMO

BACKGROUND/AIMS: Protein tyrosine phosphatases are crucial enzymes controlling numerous physiological and pathophysiological events and can be regulated by oxidation of the catalytic domain cysteine residue. Peracids are highly oxidizing compounds, and thus may induce inactivation of PTPs. The aim of the present study was to evaluate the inhibitory effect of peracids with different length of hydrocarbon chain on the activity of selected PTPs. METHODS: The enzymatic activity of human CD45, PTP1B, LAR, bacterial YopH was assayed under the cell-free conditions, and activity of cellular CD45 in human Jurkat cell lysates. The molecular docking and molecular dynamics were performed to evaluate the peracids binding to the CD45 active site. RESULTS: Here we demonstrate that peracids reduce enzymatic activity of recombinant CD45, PTP1B, LAR, YopH and cellular CD45. Our studies indicate that peracids are more potent inhibitors of CD45 than hydrogen peroxide (with an IC50 value equal to 25 nM for peroctanoic acid and 8 µM for hydrogen peroxide). The experimental data show that the inactivation caused by peracids is dependent on hydrocarbon chain length of peracids with maximum inhibitory effect of medium-chain peracids (C8-C12 acyl chain), which correlates with calculated binding affinities to the CD45 active site. CONCLUSION: Peracids are potent inhibitors of PTPs with the strongest inhibitory effect observed for medium-chain peracids.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Inibidores Enzimáticos/química , Antígenos Comuns de Leucócito/antagonistas & inibidores , Peróxidos/química , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Domínio Catalítico , Extratos Celulares/química , Ensaios Enzimáticos , Humanos , Peróxido de Hidrogênio/química , Células Jurkat , Cinética , Antígenos Comuns de Leucócito/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácido Peracético/química , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/química , Proteínas Recombinantes/química
8.
PLoS One ; 10(6): e0129168, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052950

RESUMO

Our previous work identified an intermediate binding site for taxanes in the microtubule nanopore. The goal of this study was to test derivatives of paclitaxel designed to bind to this intermediate site differentially depending on the isotype of ß-tubulin. Since ß-tubulin isotypes have tissue-dependent expression--specifically, the ßIII isotype is very abundant in aggressive tumors and much less common in normal tissues--this is expected to lead to tubulin targeted drugs that are more efficacious and have less side effects. Seven derivatives of paclitaxel were designed and four of these were amenable for synthesis in sufficient purity and yield for further testing in breast cancer model cell lines. None of the derivatives studied were superior to currently used taxanes, however computer simulations provided insights into the activity of the derivatives. Our results suggest that neither binding to the intermediate binding site nor the final binding site is sufficient to explain the activities of the derivative taxanes studied. These findings highlight the need to iteratively improve on the design of taxanes based on their activity in model systems. Knowledge gained on the ability of the engineered drugs to bind to targets and bring about activity in a predictable manner is a step towards personalizing therapies.


Assuntos
Desenho de Fármacos , Microtúbulos/metabolismo , Taxoides/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Docetaxel , Humanos , Concentração Inibidora 50 , Microtúbulos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Paclitaxel/química , Paclitaxel/farmacologia , Permeabilidade/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Taxoides/química , Termodinâmica , Tubulina (Proteína)/metabolismo
9.
Chem Biol Drug Des ; 86(2): 190-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25376845

RESUMO

Laulimalide, a cancer chemotherapeutic in preclinical development, has a unique binding site located on two adjacent ß-tubulin units between tubulin protofilaments of a microtubule. Our extended protein model more accurately mimics the microtubule environment, and together with a 135 ns molecular dynamics simulation, identifies a new binding mode for laulimalide, which differs from the modes presented in work using smaller protein models. The new laulimalide-residue interactions that are computationally revealed explain the contacts observed via independent mass shift perturbation experiments. The inclusion of explicit solvent shows that many laulimalide-tubulin interactions are water mediated. The new contacts between the drug and the microtubule structure not only improve our understanding of laulimalide binding but also will be essential for efficient derivatization and optimization of this prospective cancer chemotherapy agent. Observed changes in secondary protein structure implicate the S7-H9 loop (M-loop) and H1'-S2 loop in the mechanism by which laulimalide stabilizes microtubules to exert its cytotoxic effects.


Assuntos
Macrolídeos/química , Microtúbulos/química , Tubulina (Proteína)/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Descoberta de Drogas/métodos , Macrolídeos/metabolismo , Macrolídeos/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Termodinâmica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia
10.
Chem Res Toxicol ; 24(12): 2189-99, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22060045

RESUMO

The formation and structure of the 5'-G[8-5]U-3' intrastrand cross-link are studied using density functional theory and molecular dynamics simulations due to the potential role of this lesion in the activity of 5-halouracils in antitumor therapies. Upon UV irradiation of 5-halouracil-containing DNA, a guanine radical cation reacts with the uracil radical to form the cross-link, which involves phosphorescence or an intersystem crossing and a rate-determining step of bond formation. Following ionizing radiation, guanine and the uracil radical react, with a rate-limiting step involving hydrogen atom removal. Although cross-link formation from UV radiation is favored, comparison of calculated reaction thermokinetics with that for related experimentally observed purine-pyrimidine cross-links suggests this lesion is also likely to form from ionizing radiation. For the first time, the structure of 5'-G[8-5]U-3' within DNA is identified by molecular dynamics simulations. Furthermore, three conformations of cross-linked DNA are revealed, which differ in the configuration of the complementary bases. Distortions, such as unwinding, are localized to the cross-linked dinucleotide and complementary nucleotides, with minimal changes to the flanking bases. Global changes to the helix, such as bending and groove alterations, parallel cisplatin-induced distortions, which indicate 5'-G[8-5]U-3', may contribute to the cytotoxicity of halouracils in tumor cell DNA using similar mechanisms.


Assuntos
Antineoplásicos/química , DNA/química , Guanina/química , Uracila/química , Cinética , Simulação de Dinâmica Molecular , Termodinâmica , Raios Ultravioleta
11.
Phys Chem Chem Phys ; 13(36): 16373-83, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21842033

RESUMO

The ability of a dinucleoside monophosphate to mimic the conformation of B-DNA was tested using a combination of different phosphate models (anionic, neutral, counterion), environments (gas, water), and density functionals (B3LYP, MPWB1K, M06-2X) with the 6-31G(d,p) basis set. Three sequences (5'-GX(Py)-3', where X(Py) = T, U or (Br)U) were considered, which vary in the (natural or modified) 3' pyrimidine nucleobase (X(Py)). These bases were selected due to their presence in natural DNA, structural similarity to T and/or applications in radical-initiated anti-tumour therapies. The accuracy of each of the 54 model, method and sequence combinations was judged based on the ability to reproduce key structural features of natural B-DNA, including the stacked base-base orientation and important backbone torsion angles. B3LYP yields distorted or tilted relative base-base orientations, while many computational challenges were encountered for MPWB1K. Despite wide use in computational studies of DNA, the neutral (protonated) phosphate model could not consistently predict a stacked arrangement for all sequences. In contrast, stacked base-base arrangements were obtained for all sequences with M06-2X in conjunction with both the anionic and (sodium) counterion phosphate models. However, comparison of calculated and experimental backbone conformations reveals the charge-neutralized counterion phosphate model best mimics B-DNA. Structures optimized with implicit solvent (water) are comparable to gas-phase structures, which suggests similar results should be obtained in an environment of intermediate polarity. We recommend the use of either gas-phase or water M06-2X optimizations with the counterion phosphate model to study the structure and/or reactivity of natural or modified DNA with a dinucleoside monophosphate.


Assuntos
DNA de Forma B/química , Fosfatos de Dinucleosídeos/química , Modelos Moleculares , Gases/química , Conformação de Ácido Nucleico , Solventes/química , Água/química
12.
J Phys Chem B ; 115(37): 10990-1003, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21809837

RESUMO

Changes in the magnitude of (M06-2X/6-31+G(d,p)) π-π stacking and T-shaped (nucleobase-edge and amino acid-edge) interactions between (neutral or protonated) histidine (His) and adenine (A) dimers upon microsolvation with up to four discrete water molecules were determined. A variety of histidine-water interactions were considered including conventional (N-H···O, N···H-O, C-H···O) hydrogen bonding and nonconventional (X-H···π (neutral His) or lone-pair···π (protonated His)) contacts. Overall, the effects of discrete His-H(2)O interactions on the neutral histidine-adenine π-π contacts are negligible (<3 kJ mol(-1) or 15%) regardless of the type of water binding, the number of water molecules bound, or the His-A dimer (stacked or (amino acid- or nucleobase-edge) T-shaped) configuration. This suggests that previously reported gas-phase binding strengths for a variety of neutral amino acid-nucleobase dimers are likely relevant for a wide variety of (microsolvated) environments. In contrast, the presence of water decreases the histidine-adenine π(+)-π interaction by up to 15 kJ mol(-1) (or 30%) for all water binding modes and orientations, as well as different stacked and T-shaped His(+)-A dimers. Regardless of the larger effect of discrete histidine-water interactions on the magnitude of the π(+)-π compared with π-π interactions, the π(+)-π binding strengths remain substantially larger than the corresponding π-π contacts. These findings emphasize the distinct nature of π(+)-π and π-π interactions and suggest that π(+)-π contacts can provide significant stabilization in biological systems relative to π-π contacts under many different environmental conditions.


Assuntos
Adenina/química , DNA/química , Histidina/química , Proteínas/química , Água/química , Dimerização , Ligação de Hidrogênio , Ligação Proteica , Termodinâmica
13.
Phys Chem Chem Phys ; 12(43): 14515-26, 2010 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-20927465

RESUMO

The (gas-phase) MP2/6-31G*(0.25) π···π stacking interactions between the five natural bases and the aromatic amino acids calculated using (truncated) monomers composed of conjugated rings and/or (extended) monomers containing the biological backbone (either the protein backbone or deoxyribose sugar) were previously compared. Although preliminary energetic results indicated that the protein backbone strengthens, while the deoxyribose sugar either strengthens or weakens, the interaction calculated using truncated models, the reasons for these effects were unknown. The present work explains these observations by dissecting the interaction energy of the extended complexes into individual backbone···π and π···π components. Our calculations reveal that the total interaction energy of the extended complex can be predicted as a sum of the backbone···π and π···π components, which indicates that the biological backbone does not significantly affect the ring system through π-polarization. Instead, we find that the backbone can indirectly affect the magnitude of the π···π contribution by changing the relative ring orientations in extended dimers compared with truncated dimers. Furthermore, the strengths of the individual backbone···π contributions are determined to be significant (up to 18 kJ mol(-1)). Therefore, the origin of the energetic change upon model extension is found to result from a balance between an additional (attractive) backbone···π component and differences in the strength of the π···π interaction. In addition, to understand the effects of the biological backbone on the stacking interactions at DNA-protein interfaces in nature, we analyzed the stacking interactions found in select DNA-protein crystal structures, and verified that an additive approach can be used to examine the strength of these interactions in biological complexes. Interestingly, although the presence of attractive backbone···π contacts is qualitatively confirmed using the quantum theory of atoms in molecules (QTAIM), QTAIM electron density analysis is unable to quantitatively predict the additive relationship of these interactions. Most importantly, this work reveals that both the backbone···π and π···π components must be carefully considered to accurately determine the overall stability of DNA-protein assemblies.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Aminoácidos Aromáticos/química , Teoria Quântica , Termodinâmica
14.
J Phys Chem B ; 114(40): 12995-3004, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20853889

RESUMO

Bulky DNA addition products (adducts) formed through attack at the C8 site of guanine can adopt the syn orientation about the glycosidic bond due to changes in conformational stability or hydrogen-bonding preferences directly arising from the bulky group. Indeed, the bulky substituent may improve the stability of (non-native) Hoogsteen pairs. Therefore, such adducts often result in mutations upon DNA replication. This work examines the hydrogen-bonded pairs between the Watson-Crick and Hoogsteen faces of the ortho or para C8-phenoxyl-2'-deoxyguanosine adduct and each natural (undamaged) nucleobase with the goal to clarify the conformational preference of this type of damage, as well as provide insight into the likelihood of subsequent mutation events. B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) hydrogen-bond strengths were determined using both nucleobase and nucleoside models for adduct pairs, as well as the corresponding complexes involving natural 2'-deoxyguanosine. In addition to the magnitude of the binding strengths, the R(C1'···C1') distances and ∠(N9C1'C1') angles, as well as the degree of propeller-twist and buckle distortions, were carefully compared to the values observed in natural DNA strands. Due to structural changes in the adduct monomer upon inclusion of the sugar moiety, the monomer deformation energy significantly affects the relative hydrogen-bond strengths calculated with the nucleobase and nucleoside models. Therefore, we recommend the use of at least a nucleoside model to accurately evaluate hydrogen-bond strengths of base pairs involving flexible, bulky nucleobase adducts. Our results also emphasize the importance of considering both the magnitude of the hydrogen-bond strength and the structure of the base pair when predicting the preferential binding patterns of nucleobases. Using our best models, we conclude that the Watson-Crick face of the ortho phenoxyl adduct forms significantly more stable complexes than the Hoogsteen face, which implies that the anti orientation of the damaged base will be favored by hydrogen bonding in DNA helices. Additionally, regardless of the hydrogen-bonding face involved, cytosine forms the most stable base pair with the ortho adduct, which implies that misincorporation due to this type of damage is unlikely. Similarly, cytosine is the preferred binding partner for the Watson-Crick face of the para adduct. However, Hoogsteen interactions with the para adduct are stronger than those with natural 2'-deoxyguanosine or the ortho adduct, and this form of damage binds with nearly equal stability to both cytosine and guanine in the Hoogsteen orientation. Therefore, the para adduct may adopt multiple orientations in DNA helices and potentially cause mutations by forming pairs with different natural bases. Models of oligonucleotide duplexes must be used in future work to further evaluate other factors (stacking, major groove contacts) that may influence the conformation and binding preference of these adducts in DNA helices.


Assuntos
Adutos de DNA/química , Desoxiguanosina/química , Pareamento de Bases , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Termodinâmica
15.
J Phys Chem B ; 114(9): 3355-67, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20151654

RESUMO

Previous computational studies have examined pi-pi and pi(+)-pi stacking and T-shaped interactions in nucleobase-amino acid dimers, yet it is important to investigate how additional amino acids affect these interactions since simultaneous contacts often appear in nature. Therefore, this paper investigates the geometries and binding strengths of amino acid-nucleobase-amino acid trimers, which are compared to the corresponding nucleobase-amino acid dimer interactions. We concentrate on systems containing the natural nucleobase adenine or its (cationic) damaged counterpart, 3-methyladenine, and the aromatic amino acid histidine, in both the neutral and protonated forms. This choice of molecules provides information about pi-pi and pi(+)-pi stacking and T-shaped interactions in asymmetric, biologically relevant systems. We determined that both stacked and T-shaped interactions, as well as both pi-pi and pi(+)-pi interactions, exhibit geometric additivity. To investigate the energetic additivity in our trimers, the synergy (E(syn)) and the additivity (E(add)) energy were examined. E(add) reveals that it is important to consider the interaction between the two amino acids when examining the additivity of nucleobase-amino acid interactions. Additionally, E(syn) and E(add) indicate that pi(+)-pi interactions are quite different from pi-pi interactions. The magnitude of E(add) is generally less than 2 kJ mol(-1), which suggests that these interactions are additive. However, the interaction energy analysis does not provide information about the individual interactions in the trimers. Therefore, the quantum theory of atoms in molecules (QTAIM) was implemented. We find inconsistent conclusions from our QTAIM analysis and interaction energy evaluation. However, the magnitudes of the differences between the dimer and trimer critical point properties are extremely small and therefore may not be able to yield conclusive descriptions of differences (if any) between the dimer and trimer interactions. We hypothesize that, due to the limited number of investigations of this type, it is currently unclear how QTAIM can improve our understanding of pi-pi and pi(+)-pi dimers and trimers. Therefore, future work must systematically alter the pi-pi or pi(+)-pi system to definitively determine how the geometry, symmetry, and system size alter the QTAIM analysis, which can then be used to understand biologically relevant complexes.


Assuntos
DNA/química , Histidina/química , Adenina/análogos & derivados , Adenina/química , Dano ao DNA , Dimerização , Teoria Quântica , Termodinâmica
16.
J Phys Chem B ; 113(49): 16046-58, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19904910

RESUMO

Detailed (gas-phase) MP2/6-31G*(0.25) potential energy surface scans and CCSD(T) energy calculations at the complete basis set (CBS) limit were used to analyze the (face-to-face) stacking and (edge-to-face) T-shaped interactions between histidine (modeled as imidazole) and the DNA nucleobases. For the first time, a variety of relative monomer arrangements between both neutral and protonated histidine and the natural nucleobases were considered to determine the effects of charge on the optimum dimer geometry and binding strength. Our results reveal that protonation of histidine changes the preferred relative orientations of the monomers and propose that these geometric differences may be combined with experimental crystal structures to assess the protonation state of histidine in different environments. It is also found that protonation affects the nucleobase binding preference, as well as the magnitude of the stacking and T-shaped interactions. Indeed, the maximum possible stacking and T-shaped interactions involving the neutral histidine range between approximately 20 and 45 kJ mol(-1), while this range increases to 40-105 kJ mol(-1) upon protonation, which represents an up to 330% enhancement. Although an increase in the interaction energies upon protonation of histidine is expected, the present work provides a measure of the magnitude of this enhancement in the gas phase and reveals that the amplification is almost entirely due to larger electrostatic contributions. The relative strengthening of different classifications of dimers upon protonation leads to stronger T-shaped interactions than stacking energies for protonated histidine, while the stacking and T-shaped interactions involving neutral histidine are of comparable magnitude. Thus, there is a significant difference in the nature of the pi(cation)-pi interactions involving protonated histidine and the pi-pi interactions involving neutral histidine. The calculated strengths of the interactions studied in the present work suggest that both neutral and cationic histidine contacts will provide significant stabilization to DNA-protein complexes. Although solvation effects will decrease the magnitude of the reported interactions, our results are applicable to a variety of low-polarity, biologically-relevant environments such as nonpolar enzyme active sites. Therefore, our calculations suggest that these interactions may also be important for many biological processes. The proposed significance of these interactions is supported by the large number of histidine-nucleobase contacts that appear in experimental crystal structures. The highly accurate (MP2/6-31G*(0.25)) preferred structures and (CCSD(T)/CBS) binding strengths reported in the present work can be used as benchmarks to analyze the performance of existing, or to develop new, molecular mechanics force fields for use in large-scale molecular dynamics (MD) studies of DNA-protein complexes.


Assuntos
Pareamento de Bases , DNA/química , Histidina/metabolismo , Benchmarking , Simulação por Computador , Dimerização , Histidina/química , Modelos Moleculares , Prótons , Termodinâmica
17.
Phys Chem Chem Phys ; 11(45): 10657-70, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20145810

RESUMO

The pi-pi stacking (face-to-face) interactions between the five natural DNA or RNA nucleobases and the four aromatic amino acids were compared using three different types of dimers: (1) a truncated nucleoside (nucleobase) stacked with a truncated amino acid; (2) a truncated nucleoside (nucleobase) stacked with an extended amino acid; and (3) a nucleoside (extended nucleobase) stacked with a truncated amino acid. Systematic (MP2/6-31G*(0.25)) potential energy surface scans reveal important information about the effects of the deoxyribose sugar and protein backbone on the structure and binding energy between truncated nucleobase and amino acid models that are typically implemented in the literature. Most notably, electrostatic and steric interactions arising from the bulkiness of the biological backbones can change the preferred relative orientations of DNA and protein pi-systems. More importantly, the protein backbone can strengthen the stacking energy (by up to 10 kJ mol(-1)), while the deoxyribose moiety can strengthen or weaken the stacking interaction depending on the positioning of the amino acid relative to the sugar residue. These effects are likely due to additional interactions between the amino acid or nucleobase ring and the backbone in the extended monomer rather than significant changes in the properties of the biological pi-systems upon model extension. Since the present work reveals that all calculated DNA-protein stacking interactions are significant and approach the strength of other noncovalent interactions between biomolecules, both pi-pi and backbone-pi interactions must be considered when attempting to gain a complete picture of DNA-protein binding.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Aminoácidos/química , Nucleosídeos/química , Ligação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...