Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 11(7): 2275-2283, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35775197

RESUMO

The detection of chemicals using natural allosteric transcription factors is a powerful strategy for point-of-use molecular sensing, particularly using fieldable cell-free gene expression (CFE) systems. However, the reliance of detection schemes on characterized protein-based sensors limits the number of measurable analytes. One alternative solution to this issue is to develop new sensors by generating RNA aptamers against the target analyte and then incorporating them directly into a riboswitch scaffold for ligand-inducible genetic control of a reporter protein. However, this strategy has not generated more than a handful of successful portable cell-free molecular sensors. To address this gap, here we convert dopamine-binding aptamers into functional dopamine-sensing riboswitches that regulate gene expression in a freeze-dried CFE reaction. We then develop an assay for direct detection and semi-quantification of dopamine in human urine. We anticipate that this work will be broadly applicable for converting many in vitro-generated RNA aptamers into fieldable molecular diagnostics.


Assuntos
Aptâmeros de Nucleotídeos , Riboswitch , Aptâmeros de Nucleotídeos/metabolismo , Dopamina/genética , Regulação da Expressão Gênica , Humanos , Ligantes , Riboswitch/genética
2.
Comput Toxicol ; 222022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844258

RESUMO

Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including in silico approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. In silico approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of in silico methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.

3.
Methods Enzymol ; 550: 73-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25605381

RESUMO

Biosensors offer a built-in energy supply and inherent sensing machinery that when exploited correctly may surpass traditional sensors. However, biosensor systems have been hindered by a narrow range of ligand detection capabilities, a relatively low signal output, and their inability to integrate multiple signals. Integration of signals could increase the specificity of the sensor and enable detection of a combination of ligands that may indicate environmental or developmental processes when detected together. Amplifying biosensor signal output will increase detector sensitivity and detection range. Riboswitches offer the potential to widen the diversity of ligands that may be detected, and advances in synthetic biology are illuminating myriad possibilities in signal processing using an orthogonal parts-based engineering approach. In this chapter, we describe the design, building, and testing of a riboswitch-based Boolean logic AND gate in bacteria, where an output requires the activation of two riboswitches, and the biological circuitry required to amplify the output of the AND gate using natural extracellular bacterial communication signals to "wire" cells together.


Assuntos
Técnicas Biossensoriais/métodos , Riboswitch/genética , Biologia Sintética/métodos
4.
Methods Mol Biol ; 1111: 1-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24549608

RESUMO

Selection of aptamers that bind a specific ligand usually begins with a random library of RNA sequences, and many aptamers selected from such random pools have a simple stem-loop structure. We present here a computational approach for designing a starting library of RNA sequences with increased formation of complex structural motifs and enhanced affinity to a desired target molecule. Our approach consists of two steps: (1) generation of RNA sequences based on customized patterning of nucleotides with increased probability of forming a base pair and (2) a high-throughput virtual screening of the generated library to select aptamers with binding affinity to a small-molecule target. We developed a set of criteria that allows one to select a sequence with potential binding affinity from a pool of random sequences and designed a protocol for RNA 3D structure prediction. The proposed approach significantly reduces the RNA sequence search space, thus accelerating the experimental screening and selection of high-affinity aptamers.


Assuntos
Aptâmeros de Nucleotídeos/química , RNA/química , Pareamento de Bases , Sequência de Bases , Biologia Computacional/métodos , Conformação de Ácido Nucleico
5.
Methods Mol Biol ; 1111: 77-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24549613

RESUMO

Artificial riboswitches are engineered to regulate gene expression in response to a variety of non-endogenous small molecules and, therefore, can be useful tools to reprogram cellular behavior for different applications. A new synthetic riboswitch can be created by linking an in vitro-selected aptamer with a randomized expression platform followed by in vivo selection and screening. Here, we describe an in vivo selection and screening technique to discover artificial riboswitches in E. coli cells that is based on TEV protease-FRET substrate reporter system.


Assuntos
Endopeptidases/genética , Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Riboswitch , Aptâmeros de Nucleotídeos/genética , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Sequência de Bases , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Substâncias Luminescentes/análise , Substâncias Luminescentes/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Plasmídeos/genética
6.
ACS Chem Biol ; 8(1): 234-41, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23092157

RESUMO

Riboswitches are RNA sequences that regulate expression of associated downstream genes in response to the presence or absence of specific small molecules. A novel riboswitch that activates protein translation in E. coli cells in response to 2,4-dinitrotoluene (DNT) has been engineered. A plasmid library was constructed by incorporation of 30 degenerate bases between a previously described trinitrotoluene aptamer and the ribosome binding site. Screening was performed by placing the riboswitch library upstream of the Tobacco Etch Virus (TEV) protease coding sequence in one plasmid; a second plasmid encoded a FRET-based construct linked with a peptide containing the TEV protease cleavage site. Addition of DNT to bacterial culture activated the riboswitch, initiating translation of TEV protease. In turn, the protease cleaved the linker in the FRET-based fusion protein, causing a change in fluorescence. This new riboswitch exhibited a 10-fold increase in fluorescence in the presence of 0.5 mM DNT compared to the system without target.


Assuntos
Dinitrobenzenos , Escherichia coli , Riboswitch/fisiologia , Dinitrobenzenos/química , Dinitrobenzenos/farmacologia , Relação Dose-Resposta a Droga , Biblioteca Gênica , Modelos Moleculares , Fatores de Tempo , Regulação para Cima
7.
Biomacromolecules ; 10(5): 1055-60, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19358526

RESUMO

Riboswitches are regulatory RNAs located in the 5'-untranslated region of mRNA sequences that recognize and bind to small molecules and regulate the expression of downstream genes. Creation of synthetic riboswitches to novel ligands depends on the ability to monitor riboswitch activation in the presence of analyte. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence. Our FRET construct was composed of eGFP and a nonfluorescent yellow fluorescent protein mutant called REACh (for resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli cells activates the riboswitch and initiates the translation of mRNA. Synthesized protease cleaves the linker in the FRET-based fusion protein causing a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence. This leads to an improved detection of FRET via better signal-to-noise ratio, allowing us to monitor riboswitch activation in a wide range of analyte concentrations from 0.01 to 2.5 mM.


Assuntos
Transferência Ressonante de Energia de Fluorescência , RNA/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Cinética , Ligantes , RNA/química , RNA/genética , Teofilina/química , Teofilina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...