Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15437-15444, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747361

RESUMO

Lead-free hybrid halide perovskites have gained much attention in the field of photovoltaics due to their non-toxicity, stability and unique photo-physical properties. Sn and Ge-based ABX3 perovskites have been widely studied due to their similar electronic properties to Pb-based materials. However, the unstable oxidation state of Sn is a major challenge for the commercialization of this class of materials. To overcome this problem, here, we have designed a series of novel Ga and In-based A3B2X9-type perovskite materials incorporating the methylammonium (MA) organic cation in the A site and I- as the halide ion in the X site. In this regard, we have investigated different structural, electronic, optical and photovoltaic properties by employing the density functional theory formalism. The formation of a stable three dimensional perovskite structure is determined by the observed values of tolerance factor (TF) and octahedral factor (µ). The observed negative values of formation enthalpy manifest that our studied materials are also thermodynamically stable. The obtained band gap values reveal that our designed perovskite materials can act as semiconducting materials for application in photovoltaics. We have also investigated the optical properties of our studied materials and the observed values of dielectric function and absorption coefficient in the visible range of the electromagnetic spectrum indicate their excellent photo absorption. The observed theoretical power conversion efficiency (PCE) values reveal that (MA)3In2I9 (13.82%) and (MA)3 (Ga.50In.50)2I9 (12.8%) can be chosen as potential candidates for application in perovskite-based photovoltaics. This research provides a pathway for the development of less toxic and efficient semiconducting materials, offering exciting prospects for their utilization in optoelectronics and contributing to the ongoing efforts to advance sustainable energy technologies.

2.
RSC Adv ; 12(39): 25511-25519, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199314

RESUMO

Here, we have investigated some mixed metal hybrid halide perovskite materials by employing first principle calculation method. In this regard we have designed some Sn and Ge based hybrid halide (iodide) perovskite materials incorporating dimethylammonium (DMA) organic cation and studied their structural, optoelectronic and photovoltaic properties. Observed tolerance factor (TF) and dihedral factor (µ) manifests that our studied compounds form stable three dimensional perovskite structure. Additionally, the observed negative value of formation energy indicates their thermodynamic stability. Calculated band gap values indicate the semiconducting nature of the compounds. We have also calculated the real and imaginary part of dielectric function as well as absorption coefficient of all the studied compounds. Our investigation reveals that compounds with equal amount of Sn and Ge content exhibit higher value of dielectric function and absorption coefficient among the studied compounds. Study of photovoltaic performances reveal that DMASn0.75Ge0.25I3 exhibits the highest value of theoretical power conversion efficiency (PCE) i.e., 17.42% among the studied compounds. This investigation will help researchers to design Pb-free hybrid perovskite materials which will be beneficial for the world.

3.
RSC Adv ; 12(23): 14422-14434, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702239

RESUMO

In this work we have theoretically investigated the optoelectronic properties of a series of acceptor-donor-acceptor type molecules by employing density functional theory formalism. We have used 1,1-dicyano-methylene-3-indanone as the acceptor unit and a fused N-methyl-dithieno-pyrrole as the donor unit. We have calculated the values of dihedral angle, inter-ring bond length, bond length alteration parameters, HOMO-LUMO gap, ionization potential, electron affinity, partial density of states, reorganization energies for holes and electrons, charge transfer rate for holes and electrons of the seven types of compounds designed via molecular engineering. Calculated IP and EA values manifest that PBDB-C2 shows excellent charge transportation compared to others. Absorption spectra of the designed compounds have been studied using the time-dependent density functional theory method. From the calculation of reorganization energy it is confirmed that our designed molecules behave more likely as donor materials. Our calculated results also reveal that compounds with electron donating substituents at the acceptor units show higher value of λ max. Absorption spectra of donor/acceptor blends show similar trends with the isolated compounds. Observed lower exciton binding energy values for all the compounds indicate facile charge carrier separation at the donor/acceptor interface. Moreover, the negative values of Gibb's free energy change also indicate the ease of exciton dissociation of all the designed compounds. The photovoltaic characteristics of the studied compounds infer that all the designed compounds have the potential to become suitable candidate for the fabrication of organic semiconductors. However, PBDB-C2 and PBDB-C4 with the highest PCE of 18.25% can become the best candidate for application in photovoltaics.

4.
Phys Chem Chem Phys ; 23(23): 13190-13203, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34085069

RESUMO

A series of dyes with the D-π-A architecture has been designed and studied for dye sensitized solar cells (DSSCs). We have used phenothiazine (PTZ) and coumarin (COU) derivatives as the donor unit and benzopyrrole (BTZ) and 2-methyl-2H-isoindole-1,3-(3aH,7aH)-diene (IND) as the acceptor unit along with the azomethine group and thiophene ring as the π-spacer unit. Three electron donating groups viz. -CH3, -NH2, and -OH and four electron withdrawing groups viz. -CF3, -COCl, -F and -NO2 have been attached at the donor and the acceptor units respectively of the four unsubstituted dyes COU-BTZ, PTZ-BTZ, COU-IND and PTZ-IND. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods have been employed to investigate the structural, electronic and photochemical properties of these dyes. The study reveals that the unsubstituted dye PTZ-BTZ possesses the lowest value of ΔH-L. Our study also reveals that attachment of the -NO2 group at the acceptor unit lowers the ΔH-L values of all the dye molecules. We have observed that the excited state oxidation potential (ESOP) of all the dyes lies above the conduction band of the TiO2 semiconducting surface. However, the ground state oxidation potential (GSOP) of most of the dyes belonging to the COU-BTZ and COU-IND groups lies below the redox potential of the I-/I3- redox couple. The total reorganization energy (λtot) values of the COU-BTZ and COU-IND groups of dyes are observed to be low compared to the other groups of dyes. The study of the charge transport properties of the dyes confirms that the designed dyes will act as electron transport materials. The absorption properties of the dyes show that the COU-BTZ group of dyes possesses the maximum values of the absorption wavelength (λmax values) and attaching the -NO2 group at the acceptor unit shifts the λmax values of all the dyes to the longer region. From the study of the electronic properties of the dye-TiO2 complexes it has been observed that the performance of the dyes has been enhanced compared to the isolated dye molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...