Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biophys J ; 74(5): 2623-37, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9591686

RESUMO

The efficiency of triplet energy transfer from the special pair (P) to the carotenoid (C) in photosynthetic reaction centers (RCs) from a large family of mutant strains has been investigated. The mutants carry substitutions at positions L181 and/or M208 near chlorophyll-based cofactors on the inactive and active sides of the complex, respectively. Light-modulated electron paramagnetic resonance at 10 K, where triplet energy transfer is thermally prohibited, reveals that the mutations do not perturb the electronic distribution of P. At temperatures > or = 70 K, we observe reduced signals from the carotenoid in most of the RCs with L181 substitutions. In particular, triplet transfer efficiency is reduced in all RCs in which a lysine at L181 donates a sixth ligand to the monomeric bacteriochlorophyll B(B). Replacement of the native Tyr at M208 on the active side of the complex with several polar residues increased transfer efficiency. The difference in the efficiencies of transfer in the RCs demonstrates the ability of the protein environment to influence the electronic overlap of the chromophores and thus the thermal barrier for triplet energy transfer.


Assuntos
Carotenoides/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Conformação Proteica , Rhodobacter sphaeroides/metabolismo , Substituição de Aminoácidos , Clorofila/metabolismo , Simulação por Computador , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Transferência de Energia , Luz , Complexos de Proteínas Captadores de Luz , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
2.
Photochem Photobiol ; 66(1): 97-104, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9230708

RESUMO

Three carotenoids, spheroidene, 3,4-dihydrospheroidene and 3,4,5,6-tetrahydrospheroidene, having 8, 9 and 10 conjugated carbon-carbon double bonds, respectively, were incorporated into Rhodobacter (Rb.) sphaeroides R-26.1 reaction centers. The extents of binding were found to be 95 +/- 5% for spheroidene, 65 +/- 5% for 3,4-dihydrospheroidene and 60 +/- 10% for 3,4,5,6-tetrahydrospheroidene. The dynamics of the triplet states of the primary donor and carotenoid were measured at room temperature by flash absorption spectroscopy. The carotenoid, spheroidene, was observed to quench the primary donor triplet state. The triplet state of spheroidene that was formed subsequently decayed to the ground state with a lifetime of 7.0 +/- 0.5 microseconds. The primary donor triplet lifetime in the Rb. sphaeroides R-26.1 reaction centers lacking carotenoids was 60 +/- 5 microseconds. Quenching of the primary donor triplet state by the carotenoid was not observed in the Rb. sphaeroides R-26.1 reaction centers containing 3,4-dihydrospheroidene nor in the R-26.1 reaction centers containing 3,4,5,6-tetrahydrospheroidene. Triplet-state electron paramagnetic resonance was also carried out on the samples. The experiments revealed carotenoid triple-state signals in the Rb. sphaeroides R-26.1 reaction centers incorporated with spheroidene, indicating that the primary donor triplet is quenched by the carotenoid. No carotenoid signals were observed from Rb. sphaeroides R-26.1 reaction centers incorporating 3,4-dihydrospheroidene nor in reaction centers incorporating 3,4,5,6-tetrahydrospheroidene. Circular dichroism, steady-state absorbance band shifts accompanying the primary photochemistry in the reaction center and singlet energy transfer from the carotenoid to the primary donor confirm that the carotenoids are bound in the reaction centers and interacting with the primary donor. These studies provide a systematic approach to exploring the effects of carotenoid structure and excited-state energy on triplet transfer between the primary donor and carotenoids in reaction centers from photosynthetic bacteria.


Assuntos
Carotenoides/química , Carotenoides/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Transferência de Energia , Estrutura Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/química
3.
Biochim Biophys Acta ; 1277(3): 243-52, 1996 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-8982390

RESUMO

The lifetimes of the first excited singlet states (2(1)A(g)) of diadinoxanthin and diatoxanthin, carotenoids involved in the xanthophyll cycle in some genera of algae, have been measured by femtosecond time-resolved optical spectroscopy to be 22.8 +/- 0.1 ps and 13.3 +/- 0.1 ps, respectively. Using the energy gap law for radiationless transitions set forth by Englman and Jortner (Mol. Phys. 18 (1970) 145-164), these lifetimes correspond to S1 excited state energies of 15210 cm-1 for diadinoxanthin and 14620 cm-1 for diatoxanthin. The lowest excited singlet state energy of Chl a has an energy of 14700 cm-1. The fact that the S1 state energy of diadinoxanthin lies above that of Chl a, whereas the S1 state energy of diatoxanthin lies below that of Chl a, suggests that the xanthophyll cycle involving the enzymatic interconversion of diadinoxanthin and diatoxanthin may play a role in regulating energy flow between these molecules and Chl a in many species of algae, essentially fulfilling a role identical to that proposed for violaxanthin and zeaxanthin in higher plants and green algae (Frank et al. (1994) Photosyn. Res. 41, 389-395).


Assuntos
Carotenoides/química , Metabolismo Energético , Eucariotos/química , Xantofilas , Clorofila/química , Clorofila A , Concentração de Íons de Hidrogênio , Espectrometria de Fluorescência , Espectrofotometria , Termodinâmica
4.
Photochem Photobiol ; 64(5): 823-31, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8931381

RESUMO

The dynamics of triplet energy transfer between the primary donor and the carotenoid were measured on several photosynthetic bacterial reaction center preparations from Rhodobacter sphaeroides: (a) wild-type strain 2.4.1, (b) strain R-26.1, (c) strain R-26.1 exchanged with 13(2)-hydroxy-[Zn]-bacteriochlorophyll at the accessory bacteriochlorophyll (BChl) sites and reconstituted with spheroidene and (d) strain R-26.1 exchanged with [3-vinyl]-13(2)-hydroxy-bacteriochlorophyll at the accessory BChl sites and reconstituted with spheroidene. The rise and decay times of the primary donor and carotenoid triplet-triplet absorption signals were monitored in the visible wavelength region between 538 and 555 nm as a function of temperature from 4 to 300 K. For the samples containing carotenoids, all of the decay times correspond well to the previously observed times for spheroidene (5 +/- 2 microseconds). The rise times of the carotenoid triplets were found in all cases to be biexponential and comprised of a strongly temperature-dependent component and a temperature-independent component. From a comparison of the behavior of the carotenoid-containing samples with that from the reaction center of the carotenoidless mutant Rb. sphaeroides R-26.1, the temperature-independent component has been assigned to the buildup of the primary donor triplet state resulting from charge recombination in the reaction center. Arrhenius plots of the buildup of the carotenoid triplet states were used to determine the activation energies for triplet energy transfer from the primary donor to the carotenoid. A model for the process of triplet energy transfer that is consistent with the data suggests that the activation barrier is strongly dependent on the triplet state energy of the accessory BChl pigment, BChlB.


Assuntos
Bacterioclorofilas/metabolismo , Carotenoides/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz
5.
Biochemistry ; 35(36): 11832-8, 1996 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-8794765

RESUMO

We have postulated that the orientation of PsaC on the photosystem I core involves electrostatic interactions between charged residues on the core binding site and the subunit [Rodday, S. M., Jun, S.-S., & Biggins, J. (1993) Photosynth. Res. 36, 1-9]. We, therefore, changed eight acidic residues on PsaC to arginine and examined the efficiency of the mutant subunits in the reconstitution of P700-Fx cores in vitro. Reconstitution of the cores by the mutant subunits was determined by analysis of the kinetics of recombination reactions between P700+ and reduced acceptors as measured optically. Restoration of complete forward electron transfer, indicative of efficient subunit binding, was estimated from the ca. 30 ms decay component in the flash transients. Slightly reduced levels of reconstitution were observed for the mutants D24R, E46R/D47R. D61R, and E72R. In contrast, mutants D9R, E27R, and D32R showed significantly lower efficiencies. The presence of the iron-sulfur centers, FA and FB, in these three mutant subunits was confirmed by low-temperature EPR spectroscopy indicating that the polypeptides had folded correctly. We conclude that the introduction of positively charged side chains at positions 9, 27, and 32 seriously disrupts PsaC binding. However, when the wild-type acidic residues in these positions were changed to alanine, only mutant D9A showed a reduced level of reconstitution, suggesting that this aspartate is the most important residue participating in the electrostatic interaction with the core. The results are discussed in relation to the photosystem I crystal structure and support an orientation of PsaC on the core such that center FB is proximal to Fx.


Assuntos
Proteínas de Membrana , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteína do Fotossistema I , Proteínas/química , Alanina/genética , Sequência de Aminoácidos , Arginina/genética , Sequência de Bases , Sítios de Ligação , Cianobactérias/química , Primers do DNA , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Luz , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas/genética , Proteínas/metabolismo , Spinacia oleracea/química
6.
Photosynth Res ; 42(2): 157-66, 1994 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24306503

RESUMO

The build-up and decay of bacteriochlorophyll (BChl) and carotenoid triplet states were studied by flash absorption spectroscopy in (a) the B800-850 antenna complex ofRhodobacter (Rb.)sphaeroides wild type strain 2.4.1, (b) theRb. sphaeroides R-26.1 B850 light-harvesting complex incorporated with spheroidene, (c) the B850 complex incorporated with 3,4-dihydrospheroidene, (d) the B850 complex incorporated with 3,4,5,6-tetrahydrospheroidene and (e) theRb. sphaeroides R-26.1 B850 complex lacking carotenoids. Steady state absorption and circular dichroism spectroscopy were used to evaluate the structural integrity of the complexes. The transient data were fit according to either single or double exponential rate expressions. The triplet lifetimes of the carotenoids were observed to be 7.0±0.1 µs for the B800-850 complex, 14±2 µs for the B850 complex incorporated with spheroidene, and 19±2 µs for the B850 complex incorporated with 3,4-dihydrospheroidene. The BChl triplet lifetime in the B850 complex was 80±5 µs. No quenching of BChl triplet states was seen in the B850 complex incorporated with 3,4,5,6-tetrahydrospheroidene. For the B850 complex incorporated with spheroidene and with 3,4-dihydrospheroidene, the percentage of BChl quenched by carotenoids was found to be related to the percentage of carotenoid incorporation. The triplet energy transfer efficiencies are compared to the values for singlet energy transfer measured previously (Frank et al. (1993) Photochem. Photobiol. 57: 49-55) on the same samples. These studies provide a systematic approach to exploring the effects of state energies and lifetimes on energy transfer between BChls and carotenoids in vivo.

7.
Photosynth Res ; 41(3): 389-95, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24310153

RESUMO

Green plants use the xanthophyll cycle to regulate the flow of energy to chlorophylla within photosynthetic proteins. Under conditions of low light intensity violaxanthin, a carotenoid possessing nine conjugated double bonds, functions as an antenna pigment by transferring energy from its lowest excited singlet state to that of chlorophylla within light-harvesting proteins. When the light intensity increases, violaxanthin is biochemically transformed into zeaxanthin, a carotenoid that possesses eleven conjugated double bonds. The results presented here show that extension of the [Symbol: see text] conjugation of the polyene lowers the energy of the lowest excited singlet state of the carotenoid below that of chlorophylla. As a consequence zeaxanthin can act as a trap for the excess excitation energy on chlorophylla pigments within the protein, thus regulating the flow of energy within photosynthetic light-harvesting proteins.

8.
Photosynth Res ; 37(3): 193-203, 1993 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24317800

RESUMO

Triplet state electron paramagnetic resonance (EPR) experiments have been carried out at X-band on Rb. sphaeroides R-26 reaction centers that have been reconstituted with the carotenoid, spheroidene, and exchanged with 13(2)-OH-Zn-bacteriochlorophyll a and [3-vinyl]-13(2)-OH-bacteriochlorophyll a at the monomeric, 'accessory' bacteriochlorophyll sites BA,B or with pheophytin a at the bacteriopheophytin sites HA,B. The primary donor and carotenoid triplet state EPR signals in the temperature range 95-150 K are compared and contrasted with those from native Rb. sphaeroides wild type and Rb. sphaeroides R-26 reaction centers reconstituted with spheroidene. The temperature dependencies of the EPR signals are strikingly different for the various samples. The data prove that triplet energy transfer from the primary donor to the carotenoid is mediated by the monomeric, BChlB molecule. Furthermore, the data show that triplet energy transfer from the primary donor to the carotenoid is an activated process, the efficiency of which correlates with the estimated triplet state energies of the modified pigments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...