Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 1): 133201, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38889833

RESUMO

Biopolymer-based hydrogels have received great attention in wastewater treatment due to their excellent properties, e.g., high adsorption capacity, fast kinetics, reusability and ease of operation. In the present work, cellulose-chitosan/ß-FeOOH composite hydrogels were prepared via co-dissolution and regeneration process as well as hydrothermal in situ synthesis of ß-FeOOH. Effect of ß-FeOOH loading on the properties of the composite hydrogels and the removal efficiency of methyl orange (MO) was investigated. Results showed that ß-FeOOH was uniformly loaded onto the hydrogel framework, and the nanoporous structure of composite hydrogels could increase not only the effective contact area between ß-FeOOH and the pollutants but also the active sites. Moreover, the increased ß-FeOOH loading led to the enhanced MO removal rate under light conditions. When the loading time was extended from 6 h to 9 h, the MO removal rate increased by 21%, which can be mainly due to the photocatalytic degradation. In addition, MO removal rate reached 97.75% within 40 min under optimal conditions and attained 80.81% after five repetitions. The trapping experiment and EPR results indicated that the main active species were hydrogel radicals and holes. Consequently, this work provides an effective preparation approach for cellulose-chitosan/ß-FeOOH composite hydrogel with high adsorption and photocatalytic degradation, which would hold great promise for wastewater treatment applications.

2.
Int J Biol Macromol ; 269(Pt 1): 132098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710244

RESUMO

Polyaniline (PANI) is considered as an ideal electrode material due to its remarkable Faradaic activity, exceptional conductivity, and ease of processing. However, the agglomeration and poor cycling stability of PANI largely limit its practical utilization in energy storage devices. To address these challenges, PANI was synthesized via a facile one-pot, two-step process using cellulose nanocrystals (CNCs) as bio-templates in this work. Zeta potential and particle size measurements revealed that the CNC template could impart improved dispersion stability to the synthesized PANI, which exhibited a decrease in average particle size from 1100 nm to 300 nm as a function of 10 % CNCs. Furthermore, the effect of CNC loadings on the performance of PANI was systematically investigated. The results showed that the specific capacitance of PANI/CNC increased from 102.52 F·g-1 to 138.12 F·g-1 with the CNC loading increase from 0 to 10 wt%. Particularly, the PANI/CNC composite film with a 1:9 ratio (C-P-10 %) demonstrated a capacity retention of 84.45 % after 6000 cycles and an outstanding conductivity of 526 S·m-1. This work generally offers an effective solution for the preparation of high-performance PANI-based composites, which might hold great promise in energy storage device applications.


Assuntos
Compostos de Anilina , Celulose , Nanopartículas , Compostos de Anilina/química , Celulose/química , Nanopartículas/química , Condutividade Elétrica , Tamanho da Partícula , Capacitância Elétrica , Nanocompostos/química
3.
Carbohydr Polym ; 330: 121836, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368113

RESUMO

Dissolving cellulose at low temperatures is a key step in its efficient utilization as a renewable resource to produce high-value-added platform chemicals and high-performance materials. Here, the potential of four aprotic organic solvents was investigated for use as co-solvents with a sustainable DBU-derived ionic liquid (SIL) for the low-temperature dissolution and regeneration of cellulose. Combined experiments, density functional theory calculations, and molecular dynamic simulations were performed. The type and amount of co-solvent were found to have a significant impact on the solubility of cellulose, the dissolution process, and the structure of regenerated cellulose. The addition of organic solvents can significantly reduce the cellulose dissolution temperature and increase the solubility. Among the solvents assessed, 40 wt% DMSO exhibited the most effective synergistic interaction with SIL, where the solubility of cellulose was 14.6 wt% at 75 °C. Subsequently, the effects of the different types and amounts of co-solvents on the microscopic morphology and chemical structure of regenerated cellulose were thoroughly explored. The results showed that different types of organic solvents had different effects on the microstructure of regenerated cellulose. The results may guide the manufacturing specifications of high-performance regenerated fiber materials.

4.
Int J Biol Macromol ; 252: 126548, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648138

RESUMO

Most organic solvents are unable to dissolve carbohydrates due to the lack of hydrogen bonding ability. The development of solvent systems for dissolving cellulose is of great importance for its utilization and conversion. In this study, four new cellulose solvents were designed using inexpensive levulinic acid (LevA) and 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU) as raw materials. The results showed that the prepared DBU-LevA-2 solvent was able to dissolve up to 7 wt% of bamboo cellulose (DP = 860) and 16 wt% of microcrystalline cellulose (DP = 280) at 100 °C and regenerated without derivatization. Also, the molar ratio of each component of this solvent has a significant effect on the dissolution properties of cellulose. The regenerated cellulose had the typical crystalline characteristics of cellulose II. Subsequently, the interactions and microscopic behaviors of solvent and cellulose during the dissolution process were thoroughly investigated by using NMR spectroscopy combined with density functional theory. The systematic study showed that the hydrogen bond-forming ability provided by DBU, a superbase, plays an indispensable role in the overall solvent system.


Assuntos
Celulose , Ácidos Levulínicos , Solventes/química , Celulose/química , Ligação de Hidrogênio
5.
ACS Omega ; 6(32): 21033-21042, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34423211

RESUMO

Enhanced interspecies electron transfer (IET) among symbiotic microorganisms is an effective method to increase the rate of methane (CH4) production in anaerobic digestion. Direct interspecies electron transfer (DIET), which does not involve dissolved redox media, is considered an alternative and superior method to enhance methane production by interspecific hydrogen (H2) transfer (IHT). In this study, nickel foam was built into a semicontinuous anaerobic reactor to investigate its effect on the metabolism of propionate and butyrate. Both increased the average yield of CH4 in anaerobic digestion by 18.1 and 15.9%, respectively. Analysis of bacterial and archaeal communities showed that the addition of nickel foam could increase the relative abundance of microbial communities involved in DIET and could increase the diversity of microorganisms in the reactor. Moreover, the anaerobic digestion performance of the nickel foam reactor was good at high hydrogen partial pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...