Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiol Med ; 128(2): 222-233, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36658367

RESUMO

OBJECTIVES: To develop a structured reporting (SR) template for whole-body CT examinations of polytrauma patients, based on the consensus of a panel of emergency radiology experts from the Italian Society of Medical and Interventional Radiology. METHODS: A multi-round Delphi method was used to quantify inter-panelist agreement for all SR sections. Internal consistency for each section and quality analysis in terms of average inter-item correlation were evaluated by means of the Cronbach's alpha (Cα) correlation coefficient. RESULTS: The final SR form included 118 items (6 in the "Patient Clinical Data" section, 4 in the "Clinical Evaluation" section, 9 in the "Imaging Protocol" section, and 99 in the "Report" section). The experts' overall mean score and sum of scores were 4.77 (range 1-5) and 257.56 (range 206-270) in the first Delphi round, and 4.96 (range 4-5) and 208.44 (range 200-210) in the second round, respectively. In the second Delphi round, the experts' overall mean score was higher than in the first round, and standard deviation was lower (3.11 in the second round vs 19.71 in the first round), reflecting a higher expert agreement in the second round. Moreover, Cα was higher in the second round than in the first round (0.97 vs 0.87). CONCLUSIONS: Our SR template for whole-body CT examinations of polytrauma patients is based on a strong agreement among panel experts in emergency radiology and could improve communication between radiologists and the trauma team.


Assuntos
Traumatismo Múltiplo , Radiologia , Humanos , Técnica Delphi , Consenso , Tomografia Computadorizada por Raios X
2.
Radiol Med ; 127(5): 471-483, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35303247

RESUMO

BACKGROUND: Radiology is an essential tool in the management of a patient. The aim of this manuscript was to build structured report (SR) Mammography based in Breast Cancer. METHODS: A working team of 16 experts (group A) was composed to create a SR for Mammography Breast Cancer. A further working group of 4 experts (group B), blinded to the activities of the group A, was composed to assess the quality and clinical usefulness of the SR final draft. Modified Delphi process was used to assess level of agreement for all report sections. Cronbach's alpha (Cα) correlation coefficient was used to assess internal consistency and to measure quality analysis according to the average inter-item correlation. RESULTS: The final SR version was built by including n = 2 items in Personal Data, n = 4 items in Setting, n = 2 items in Comparison with previous breast examination, n = 19 items in Anamnesis and clinical context; n = 10 items in Technique; n = 1 item in Radiation dose; n = 5 items Parenchymal pattern; n = 28 items in Description of the finding; n = 12 items in Diagnostic categories and Report and n = 1 item in Conclusions. The overall mean score of the experts and the sum of score for structured report were 4.9 and 807 in the second round. The Cronbach's alpha (Cα) correlation coefficient was 0.82 in the second round. About the quality evaluation, the overall mean score of the experts was 3.3. The Cronbach's alpha (Cα) correlation coefficient was 0.90. CONCLUSIONS: Structured reporting improves the quality, clarity and reproducibility of reports across departments, cities, countries and internationally and will assist patient management and improve breast health care and facilitate research.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Técnica Delphi , Feminino , Humanos , Mamografia , Reprodutibilidade dos Testes , Raios X
3.
Radiol Med ; 127(1): 21-29, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34741722

RESUMO

BACKGROUND: Structured reporting (SR) in radiology is becoming increasingly necessary and has been recognized recently by major scientific societies. This study aims to build structured CT-based reports in colon cancer during the staging phase in order to improve communication between the radiologist, members of multidisciplinary teams and patients. MATERIALS AND METHODS: A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology, was established. A modified Delphi process was used to develop the SR and to assess a level of agreement for all report sections. Cronbach's alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation. RESULTS: The final SR version was built by including n = 18 items in the "Patient Clinical Data" section, n = 7 items in the "Clinical Evaluation" section, n = 9 items in the "Imaging Protocol" section and n = 29 items in the "Report" section. Overall, 63 items were included in the final version of the SR. Both in the first and second round, all sections received a higher than good rating: a mean value of 4.6 and range 3.6-4.9 in the first round; a mean value of 5.0 and range 4.9-5 in the second round. In the first round, Cronbach's alpha (Cα) correlation coefficient was a questionable 0.61. In the first round, the overall mean score of the experts and the sum of scores for the structured report were 4.6 (range 1-5) and 1111 (mean value 74.07, STD 4.85), respectively. In the second round, Cronbach's alpha (Cα) correlation coefficient was an acceptable 0.70. In the second round, the overall mean score of the experts and the sum of score for structured report were 4.9 (range 4-5) and 1108 (mean value 79.14, STD 1.83), respectively. The overall mean score obtained by the experts in the second round was higher than the overall mean score of the first round, with a lower standard deviation value to underline greater agreement among the experts for the structured report reached in this round. CONCLUSIONS: A wide implementation of SR is of critical importance in order to offer referring physicians and patients optimum quality of service and to provide researchers with the best quality data in the context of big data exploitation of available clinical data. Implementation is a complex procedure, requiring mature technology to successfully address the multiple challenges of user-friendliness, organization and interoperability.


Assuntos
Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/patologia , Técnica Delphi , Radiologistas , Relatório de Pesquisa/normas , Tomografia Computadorizada por Raios X/métodos , Colo/diagnóstico por imagem , Colo/patologia , Consenso , Humanos , Estadiamento de Neoplasias
4.
Front Endocrinol (Lausanne) ; 12: 748944, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917023

RESUMO

Background: Structured reporting (SR) in radiology is becoming increasingly necessary and has been recognized recently by major scientific societies. This study aims to build structured CT-based reports in Neuroendocrine Neoplasms during the staging phase in order to improve communication between the radiologist and members of multidisciplinary teams. Materials and Methods: A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology, was established. A Modified Delphi process was used to develop the SR and to assess a level of agreement for all report sections. Cronbach's alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation. Results: The final SR version was built by including n=16 items in the "Patient Clinical Data" section, n=13 items in the "Clinical Evaluation" section, n=8 items in the "Imaging Protocol" section, and n=17 items in the "Report" section. Overall, 54 items were included in the final version of the SR. Both in the first and second round, all sections received more than a good rating: a mean value of 4.7 and range of 4.2-5.0 in the first round and a mean value 4.9 and range of 4.9-5 in the second round. In the first round, the Cα correlation coefficient was a poor 0.57: the overall mean score of the experts and the sum of scores for the structured report were 4.7 (range 1-5) and 728 (mean value 52.00 and standard deviation 2.83), respectively. In the second round, the Cα correlation coefficient was a good 0.82: the overall mean score of the experts and the sum of scores for the structured report were 4.9 (range 4-5) and 760 (mean value 54.29 and standard deviation 1.64), respectively. Conclusions: The present SR, based on a multi-round consensus-building Delphi exercise following in-depth discussion between expert radiologists in gastro-enteric and oncological imaging, derived from a multidisciplinary agreement between a radiologist, medical oncologist and surgeon in order to obtain the most appropriate communication tool for referring physicians.


Assuntos
Tumores Neuroendócrinos/diagnóstico por imagem , Adulto , Consenso , Técnica Delphi , Humanos , Estadiamento de Neoplasias , Tumores Neuroendócrinos/patologia , Tomografia Computadorizada por Raios X
5.
Diagnostics (Basel) ; 11(11)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34829384

RESUMO

BACKGROUND: Structured reporting (SR) in radiology has been recognized recently by major scientific societies. This study aims to build structured computed tomography (CT) and magnetic resonance (MR)-based reports in pancreatic adenocarcinoma during the staging phase in order to improve communication between the radiologist and members of multidisciplinary teams. MATERIALS AND METHODS: A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology, was established. A modified Delphi process was used to develop the CT-SR and MRI-SR, assessing a level of agreement for all report sections. Cronbach's alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation. RESULTS: The final CT-SR version was built by including n = 16 items in the "Patient Clinical Data" section, n = 11 items in the "Clinical Evaluation" section, n = 7 items in the "Imaging Protocol" section, and n = 18 items in the "Report" section. Overall, 52 items were included in the final version of the CT-SR. The final MRI-SR version was built by including n = 16 items in the "Patient Clinical Data" section, n = 11 items in the "Clinical Evaluation" section, n = 8 items in the "Imaging Protocol" section, and n = 14 items in the "Report" section. Overall, 49 items were included in the final version of the MRI-SR. In the first round for CT-SR, all sections received more than a good rating. The overall mean score of the experts was 4.85. The Cα correlation coefficient was 0.85. In the second round, the overall mean score of the experts was 4.87, and the Cα correlation coefficient was 0.94. In the first round, for MRI-SR, all sections received more than a good rating. The overall mean score of the experts was 4.73. The Cα correlation coefficient was 0.82. In the second round, the overall mean score of the experts was 4.91, and the Cα correlation coefficient was 0.93. CONCLUSIONS: The CT-SR and MRI-SR are based on a multi-round consensus-building Delphi exercise derived from the multidisciplinary agreement of expert radiologists in order to obtain more appropriate communication tools for referring physicians.

6.
J Clin Med ; 10(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34501455

RESUMO

Structured reporting (SR) in radiology is becoming increasingly necessary and has been recognized recently by major scientific societies. This study aims to build structured CT-based reports for lymphoma patients during the staging phase to improve communication between radiologists, members of multidisciplinary teams, and patients. A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology (SIRM), was established. A modified Delphi process was used to develop the SR and to assess a level of agreement for all report sections. The Cronbach's alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation. The final SR version was divided into four sections: (a) Patient Clinical Data, (b) Clinical Evaluation, (c) Imaging Protocol, and (d) Report, including n = 13 items in the "Patient Clinical Data" section, n = 8 items in the "Clinical Evaluation" section, n = 9 items in the "Imaging Protocol" section, and n = 32 items in the "Report" section. Overall, 62 items were included in the final version of the SR. A dedicated section of significant images was added as part of the report. In the first Delphi round, all sections received more than a good rating (≥3). The overall mean score of the experts and the sum of score for structured report were 4.4 (range 1-5) and 1524 (mean value of 101.6 and standard deviation of 11.8). The Cα correlation coefficient was 0.89 in the first round. In the second Delphi round, all sections received more than an excellent rating (≥4). The overall mean score of the experts and the sum of scores for structured report were 4.9 (range 3-5) and 1694 (mean value of 112.9 and standard deviation of 4.0). The Cα correlation coefficient was 0.87 in this round. The highest overall means value, highest sum of scores of the panelists, and smallest standard deviation values of the evaluations in this round reflect the increase of the internal consistency and agreement among experts in the second round compared to first round. The accurate statement of imaging data given to referring physicians is critical for patient care; the information contained affects both the decision-making process and the subsequent treatment. The radiology report is the most important source of clinical imaging information. It conveys critical information about the patient's health and the radiologist's interpretation of medical findings. It also communicates information to the referring physicians and records this information for future clinical and research use. The present SR was generated based on a multi-round consensus-building Delphi exercise and uses standardized terminology and structures, in order to adhere to diagnostic/therapeutic recommendations and facilitate enrolment in clinical trials, to reduce any ambiguity that may arise from non-conventional language, and to enable better communication between radiologists and clinicians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...