Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5609, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965228

RESUMO

Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.


Assuntos
Epilepsia , Neurônios , Optogenética , Animais , Concentração de Íons de Hidrogênio , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Epilepsia/fisiopatologia , Epilepsia/metabolismo , Epilepsia/tratamento farmacológico , Humanos , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Convulsões/metabolismo , Halorrodopsinas/metabolismo , Halorrodopsinas/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Luciferases/metabolismo , Luciferases/genética , Células Piramidais/metabolismo , Células Piramidais/efeitos dos fármacos , Imidazóis/farmacologia , Pilocarpina/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células HEK293 , Pirazinas
2.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397009

RESUMO

Kinase D-interacting substrate of 220 kDa (Kidins220) is a transmembrane protein that participates in neural cell survival, maturation, and plasticity. Mutations in the human KIDINS220 gene are associated with a neurodevelopmental disorder ('SINO' syndrome) characterized by spastic paraplegia, intellectual disability, and in some cases, autism spectrum disorder. To better understand the pathophysiology of KIDINS220-linked pathologies, in this study, we assessed the sensory processing and social behavior of transgenic mouse lines with reduced Kidins220 expression: the CaMKII-driven conditional knockout (cKO) line, lacking Kidins220 in adult forebrain excitatory neurons, and the Kidins220floxed line, expressing constitutively lower protein levels. We show that alterations in Kidins220 expression levels and its splicing pattern cause impaired response to both auditory and olfactory stimuli. Both transgenic lines show impaired startle response to high intensity sounds, with preserved pre-pulsed inhibition, and strongly reduced social odor recognition. In the Kidins220floxed line, olfactory alterations are associated with deficits in social memory and increased aggressive behavior. Our results broaden our knowledge of the SINO syndrome; understanding sensory information processing and its deviations under neuropathological conditions is crucial for devising future therapeutic strategies to enhance the quality of life of affected individuals.


Assuntos
Transtorno do Espectro Autista , Proteínas de Membrana , Proteínas do Tecido Nervoso , Sensação , Comportamento Social , Adulto , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Percepção , Qualidade de Vida
3.
Cell Mol Life Sci ; 80(12): 356, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947886

RESUMO

Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Masculino , Gravidez , Feminino , Camundongos , Animais , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/induzido quimicamente , Índice Glicêmico , Convulsões , Hipocampo , Epilepsia/genética , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...