Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38541771

RESUMO

Background: Multiple sclerosis (MS) is characterized as a neurodegenerative condition possibly triggered by autoimmune mechanisms, impacting the entire central nervous system. In this context, neurorehabilitation plays a crucial role in every phase of the disease, aiming to restore and preserve motor functions in MS patients. In particular, robotic gait training (RGT) allows intensive, repetitive, and task-oriented training, which is pivotal in boosting neuroplastic processes. Thus, the primary aim of our study is to evaluate the effectiveness of innovative robotic gait training, using the G-EO system, on gait, functional abilities, and quality of life (QoL) in patients affected by MS. Secondly, we evaluated the effect of the robotic rehabilitation on lower-limb motor functioning, balance, sensation, and joint functioning. Methods: The study involved twenty MS patients, divided into two groups with comparable medical characteristics and rehabilitation training duration. The experimental group (EG) underwent robotic gait training with the G-EO system (n. 10), while the control group (CG) received traditional rehabilitation training (n. 10). Results: Both groups exhibited improvements in disability level (Functional Independence Measure), 10 m walking distance (10MWT), gait, and balance performance (Functional Ambulation Classification, Tinetti Scale). However, the EG demonstrated a more significant improvement. The G-EO system notably reduced spasticity in the lower limbs (Modified Ashworth Scale) exclusively in the EG. Discussion: This study suggests that the G-EO system could be a valuable tool for enhancing gait functions, including lower-limb movements, functional abilities, and QoL in individuals with MS.

2.
Brain Sci ; 13(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759913

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative disorders that causes postural instability and gait alterations, such as reduced walking speed, shorter step length, and gait asymmetry, exposing patients to a higher risk of falling. Recently, virtual reality (VR) was added to a treadmill, in order to promote motor functional recovery and neuroplastic processes. Twenty PD patients were enrolled and randomly assigned to two groups: the experimental group (EG) and the control group (CG). In particular, patients in the EG were trained with the C-Mill, an innovative type of treadmill, which is equipped with semi-immersive VR, whereas the CG performed conventional physiotherapy. Patients in both groups were evaluated through a specific motor assessment battery at baseline (T0) and after the training (T1). Comparing pre-(T0) and post-(T1) treatment scores, in the EG, we found statistical significances in the following outcome measures: 6 Minutes Walking Test (6MWT) (p < 0.0005), Timed up and go (TUG right) (p < 0.03), Berg Balance Scale (BBS) (p < 0.006), Tinetti Scale (TS) (p < 0.002), Falls Efficacy Scale- International (FES-I), (p < 0.03) Unified PD Rating Scale-III (UPDRS) (p < 0.002), and Functional Independence Measure (FIM) (p < 0.004). Also, the CG showed statistical significances after the training. Between-group (EG and CG) analysis showed significative statistical differences in 6MWT (p < 0.006), BBS (p < 0.006), TS (p < 0.008), FES-I (p < 0.01), and FIM (p < 0.009). From our results it emerges that both groups (EG and CG) achieved better outcome scores after the treatment, suggesting that both physiotherapy interventions were effective. However, the EG training using VR seemed to have induced more improvements, especially in gait and balance skills. Then, C-Mill could be a valid adjunctive treatment in the context of gait and balance disturbances, which are very common in the PD population.

3.
Biomedicines ; 11(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37626645

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor alterations. Typical motor symptoms include resting tremors, bradykinesia (hypokinesia or akinesia), muscular stiffness, gait alterations, and postural instability. In this context, neurorehabilitation may have a pivotal role in slowing the progression of PD, using both conventional and innovative rehabilitation approaches. Thirty patients (15 males and 15 females) affected by PD were enrolled in our study. We randomly divided the patients into two groups, an experimental group (EG) and a control group (CG). In particular, the EG performed gait and balance training using the Rysen system, which is an innovative body weight support (BWS) system, whilst the CG received conventional physiotherapy. Both groups underwent 20 sessions, five times weekly, with each session lasting about 40 min. At the end of the training sessions (T1), we found that both groups (EG and CG) achieved clinical improvements, although the EG showed better scores for post-treatment regarding global motor functioning and postural stability compared to the CG. In conclusion, our results suggest that the Rysen system, which is an innovative BWS tool, could be considered a valid device for improving postural control and global motor functions, when compared to conventional gait training, in patients affected by PD.

4.
Innov Clin Neurosci ; 18(4-6): 15-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34980978

RESUMO

Primary lateral sclerosis (PLS) is an adult-onset idiopathic disorder of the upper motor neuron system. Robot-aided rehabilitation with the Lokomat-Pro (LT) allows maximizing motor training by finely and individually controlling motor activation. No data are currently available on the use of robot-aided rehabilitation in PLS. The aim of this case study was to evaluate the effectiveness of a customized robotic rehabilitation protocol in PLS. A 54-year-old woman, diagnosed with PLS five years before admission, came to our clinic to undergo rehabilitation training due to gait difficulties with spastic paraparesis. The patient was treated with two different approaches: conventional physiotherapy followed by a combined approach (i.e. PT plus LT). After the conventional PT rehabilitation, no significant functional improvement was noted. However, the combined approach led to a significant improvement in functional motor skills, including walking, balance and lower limb muscle strength, and spasticity. Our experimental training combining robot-aided and conventional rehabilitation could be a promising approach to mitigate the PLS disability burden.

5.
Prog Neurobiol ; 194: 101884, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32659317

RESUMO

The pathophysiology of chronic tic disorder (cTD) and Gilles de la Tourette syndrome (GTS) is characterized by the dysfunction of both motor and non - motor cortico - striatal - thalamo - cortical (CSTC) circuitries, which leads to tic release and comorbids. A role of fronto - parietal network (FPN) connectivity breakdown has been postulated for tic pathogenesis, given that the FPN entertain connections with limbic, paralimbic, and CSTC networks. Our study was aimed at characterizing the FPN functional connectivity in cTD and GTS in order to assess the role of its deterioration in tic severity and the degree of comorbids. We recorded scalp EEG during resting state in patients with cTD and GTS. The eLORETA current source densities were analyzed, and the lagged phase synchronization (LPS) was calculated to estimate nonlinear functional connectivity between cortical areas. We found that the FPN functional connectivity in delta band was more detrimental in more severe GTS patients. Also, the sensorimotor functional connectivity in beta2 band was stronger in more severe cTD and GTS patients. FPN functional connectivity deterioration correlated with comorbids presence and severity in patients with GTS. Our data suggest that a FPN disconnection may contribute to the motoric symptomatology and comorbid severity in GTS, whereas sensorimotor disconnection may contribute to tic severity in cTD and GTS. Although preliminary, our study points out a differently disturbed brain connectivity between patients with cTD and GTS. This may serve as diagnostic marker and potentially interesting base to develop pharmacological and noninvasive neuromodulation trials aimed at reducing tic symptomatology.


Assuntos
Gânglios da Base/fisiopatologia , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiopatologia , Conectoma , Sincronização de Fases em Eletroencefalografia/fisiologia , Rede Nervosa/fisiopatologia , Transtornos de Tique/fisiopatologia , Adolescente , Criança , Feminino , Humanos , Masculino , Síndrome de Tourette/fisiopatologia
6.
Clin Neurophysiol ; 130(5): 767-780, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30904771

RESUMO

OBJECTIVE: The objective of this study was the evaluation of the clinical and neurophysiological effects of intensive robot-assisted hand therapy compared to intensive occupational therapy in the chronic recovery phase after stroke. METHODS: 50 patients with a first-ever stroke occurred at least six months before, were enrolled and randomised into two groups. The experimental group was provided with the Amadeo™ hand training (AHT), whereas the control group underwent occupational therapist-guided conventional hand training (CHT). Both of the groups received 40 hand training sessions (robotic and conventional, respectively) of 45 min each, 5 times a week, for 8 consecutive weeks. All of the participants underwent a clinical and electrophysiological assessment (task-related coherence, TRCoh, and short-latency afferent inhibition, SAI) at baseline and after the completion of the training. RESULTS: The AHT group presented improvements in both of the primary outcomes (Fugl-Meyer Assessment for of Upper Extremity and the Nine-Hole Peg Test) greater than CHT (both p < 0.001). These results were paralleled by a larger increase in the frontoparietal TRCoh in the AHT than in the CHT group (p < 0.001) and a greater rebalance between the SAI of both the hemispheres (p < 0.001). CONCLUSIONS: These data suggest a wider remodelling of sensorimotor plasticity and interhemispheric inhibition between sensorimotor cortices in the AHT compared to the CHT group. SIGNIFICANCE: These results provide neurophysiological support for the therapeutic impact of intensive robot-assisted treatment on hand function recovery in individuals with chronic stroke.


Assuntos
Mãos/fisiopatologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Terapia Ocupacional , Robótica/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...