Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Microbiol ; 92: 103577, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950161

RESUMO

Wine is generally considered as hostile medium in which spoilage microbes have to manage with many abiotic factors among which low nutrient content. Wines elaborated in 8 wineries were sampled during the first summer of aging over two consecutive vintages, and analysed for carbohydrate composition. This revealed the systematic presence of many carbohydrates including those useful for the spoilage yeast Brettanomyces bruxellensis. However, during the first summer of aging, the changes in wine carbohydrate composition were low and it was difficult to assess how much carbohydrate composition contributed to wine spoilage by B. bruxellensis. Subsequent laboratory experiments in inoculated wines showed that the sugars preferentially consumed in wine by the spoilage yeast are d-glucose, d-fructose, and trehalose, whatever the yeast strain considered. The addition of these sugars to red wines accelerates the yeast growth and the volatile phenols formation. Although probably not the only promoting factor, the presence of high amounts of metabolisable sugars thus really increases the risk of "brett" spoilage.


Assuntos
Brettanomyces/isolamento & purificação , Carboidratos/química , Contaminação de Alimentos/análise , Vinho/microbiologia , Brettanomyces/genética , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Metabolismo dos Carboidratos , Fermentação , Microbiologia de Alimentos , Vinho/análise
2.
Food Microbiol ; 87: 103379, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31948620

RESUMO

Brettanomyces bruxellensis is a yeast species found in many fermented matrices. A high level of genetic diversity prevails in this species and was recently connected with tolerance to sulfur dioxide, the main preservative used in wine. We therefore examine other phenotypes that may modulate the ability of the species to spoil wine, in a selection of representative strains. The species shows a fairly high homogeneity with respect to the carbohydrates that can support growth, but more diverse behaviors regarding tolerance to low pH or ethanol. Thought no clear link can be drawn with genotype, some strains appear more tolerant than the others, mainly in the AWRI1499 like genetic group. Volatile phenol production is ubiquitous within the species, independent from yeast growth profile and not affected by the nature of the growth substrate. The specific production. n rate of volatile phenol production raises in case of increased aeration. It is little affected by pH decrease until 3.0 or by ethanol concentration increase up to 12% vol, but it decreased in case of increased constraint (pH < 3.0, Ethanol ≥14% vol) or combination of constraints. All the strain studied have thus the ability to spoil wine but some outstanding dangerous strains can even spoil the wine with high level of constrainst.


Assuntos
Brettanomyces/isolamento & purificação , Vinho/microbiologia , Brettanomyces/efeitos dos fármacos , Brettanomyces/crescimento & desenvolvimento , Brettanomyces/metabolismo , Etanol/metabolismo , Conservantes de Alimentos/farmacologia , Genótipo , Concentração de Íons de Hidrogênio , Fenótipo , Dióxido de Enxofre/farmacologia , Vinho/análise
3.
PLoS One ; 14(12): e0222749, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31851678

RESUMO

Brettanomyces bruxellensis is the main wine spoiler yeast all over the world, yet the structure of the populations associated with winemaking remains elusive. In this work, we considered 1411 wine isolates from 21 countries that were genotyped using twelve microsatellite markers. We confirmed that B. bruxellensis isolates from wine environments show high genetic diversity, with 58 and 42% of putative triploid and diploid individuals respectively distributed in 5 main genetic groups. The distribution in the genetic groups varied greatly depending on the country and/or the wine-producing region. However, the two possible triploid wine groups showing sulfite resistance/tolerance were identified in almost all regions/countries. Genetically identical isolates were also identified. The analysis of these clone groups revealed that a given genotype could be isolated repeatedly in the same winery over decades, demonstrating unsuspected persistence ability. Besides cellar residency, a great geographic dispersal was also evidenced, with some genotypes isolated in wines from different continents. Finally, the study of old isolates and/or isolates from old vintages revealed that only the diploid groups were identified prior 1990 vintages. The putative triploid groups were identified in subsequent vintages, and their proportion has increased steadily these last decades, suggesting adaptation to winemaking practices such as sulfite use. A possible evolutionary scenario explaining these results is discussed.


Assuntos
Brettanomyces/genética , Brettanomyces/isolamento & purificação , DNA Fúngico/análise , Microbiologia de Alimentos , Vinho/análise , Brettanomyces/crescimento & desenvolvimento , DNA Fúngico/genética , Fermentação , Genótipo , Geografia , Vinho/microbiologia
4.
Sci Rep ; 8(1): 4136, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515178

RESUMO

Brettanomyces bruxellensis is a unicellular fungus of increasing industrial and scientific interest over the past 15 years. Previous studies revealed high genotypic diversity amongst B. bruxellensis strains as well as strain-dependent phenotypic characteristics. Genomic assemblies revealed that some strains harbour triploid genomes and based upon prior genotyping it was inferred that a triploid population was widely dispersed across Australian wine regions. We performed an intraspecific diversity genotypic survey of 1488 B. bruxellensis isolates from 29 countries, 5 continents and 9 different fermentation niches. Using microsatellite analysis in combination with different statistical approaches, we demonstrate that the studied population is structured according to ploidy level, substrate of isolation and geographical origin of the strains, underlying the relative importance of each factor. We found that geographical origin has a different contribution to the population structure according to the substrate of origin, suggesting an anthropic influence on the spatial biodiversity of this microorganism of industrial interest. The observed clustering was correlated to variable stress response, as strains from different groups displayed variation in tolerance to the wine preservative sulfur dioxide (SO2). The potential contribution of the triploid state for adaptation to industrial fermentations and dissemination of the species B. bruxellensis is discussed.


Assuntos
Brettanomyces , Diploide , Genoma Fúngico , Genótipo , Triploidia , Vinho/microbiologia , Austrália , Brettanomyces/genética , Brettanomyces/isolamento & purificação
5.
BMC Genomics ; 17(1): 984, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905883

RESUMO

BACKGROUND: Oenococcus oeni is the bacterial species that drives malolactic fermentation in most wines. Several studies have described a high intraspecific diversity regarding carbohydrate degradation abilities but the link between the phenotypes and the genes and metabolic pathways has been poorly described. RESULTS: A collection of 41 strains whose genomic sequences were available and representative of the species genomic diversity was analyzed for growth on 18 carbohydrates relevant in wine. The most frequently used substrates (more than 75% of the strains) were glucose, trehalose, ribose, cellobiose, mannose and melibiose. Fructose and L-arabinose were used by about half the strains studied, sucrose, maltose, xylose, galactose and raffinose were used by less than 25% of the strains and lactose, L-sorbose, L-rhamnose, sorbitol and mannitol were not used by any of the studied strains. To identify genes and pathways associated with carbohydrate catabolic abilities, gene-trait matching and a careful analysis of gene mutations and putative complementation phenomena were performed. CONCLUSIONS: For most consumed sugars, we were able to propose putatively associated metabolic pathways. Most associated genes belong to the core genome. O. oeni appears as a highly specialized species, ideally suited to fermented fruit juice and more specifically to wine for a subgroup of strains.


Assuntos
Metabolismo dos Carboidratos/genética , Genoma Bacteriano , Oenococcus/genética , Hibridização Genômica Comparativa , Redes e Vias Metabólicas/genética , Monossacarídeos/metabolismo , Fenótipo , Sinais Direcionadores de Proteínas/genética , Vinho/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...