Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 7(1): 63-76, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34792059

RESUMO

This work addresses the issue of dark states formation in QDs by cooperative excitonic and intrinsic defect-assisted radiative transitions. Here we refer to the observed blinking as D-type to distinguish it from purely excitonic types. It is shown experimentally that defect-assisted radiative relaxations in a single I-III-VI QD result in atypical blinking characteristics that cannot be explained on the basis of charged exciton models. In addition to the excitonic channel, it has been proposed that defect-assisted kinetics can also form blinking patterns. Two conditions for the formation of dark states have been identified which are related to correlation and competition when considering photons emitted from bright defects. Two transition schemes have therefore been proposed. The first transition scheme includes time-correlated trapping of more than one electron at a single trap centre. This is used to simulate variations in the defect's charge state and switching between radiative/nonradiative transitions. The latter scheme, on the other hand, involves uncorrelated trapping and radiative relaxations from two different types of defects (competition). Both schemes are seen to play an equal role in radiative processes in I-III-VI QDs. Considered together, the proposed models can reflect the experimental data with very good accuracy, providing a better understanding of the underlying physics. An important implication of these schemes is that dark states formation doesn't have to be limited to mechanisms that involve charged excitons, and it may also be observed for independent defect assisted kinetics. This is especially valid for highly defected or multinary QDs.


Assuntos
Pontos Quânticos , Piscadela , Fótons
2.
Nanomaterials (Basel) ; 10(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290061

RESUMO

We demonstrate a low-temperature synthesis of hydrophilic, penicillamine-stabilized hybrid CdS-Au nanoparticles (NPs) utilizing different Au concentrations. The obtained hybrid nanomaterials exhibit photoluminescence quenching and emission lifetime reduction in comparison with their raw semiconductor CdS NPs counterparts. An increase of concentration of Au present at the surface of CdS leads to lower photoluminescence intensity and faster emission decays, suggesting more efficient charge separation when larger Au domains are present. For photocatalysis studies, we performed methylene blue (MB) absorption measurements under irradiation in the presence of CdS-Au NPs. After 1 h of light exposure, we observed the absorbance decrease to about 35% and 10% of the initial value for the CdS-5Au and CdS-7.5Au (the hybrid NPs obtained in a presence of 5.0 and 7.5 mM Au), respectively, which indicates MB reduction caused by electrons effectively separated from holes on metal surface. In further similar photocatalysis experiments, we measured bovine serum albumin (BSA) integrated photoluminescence intensity quenching in the presence of CdS-Au NPs, with a 50% decrease being obtained for CdS-2.5Au NPs and CdS-5Au NPs, with a faster response rate detected for the system prepared with a higher Au concentration. The results suggest hole-driven reactive oxygen species (ROS) production, causing BSA degeneration. Finally, we performed two-photon excited emission (TPEE) measurements for CdS-5Au NPs, obtaining their two-photon absorption (TPA) cross-section values up to 15.8 × 103 GM (Goeppert-Mayer units). We conclude that the obtained water-soluble CdS-Au NPs exhibit potential triple functionalities as photocatalysts for reduction and oxidation reactions as well as materials for two-photon absorption applications, so that they may be considered as future theranostics.

3.
Dalton Trans ; 47(25): 8320-8329, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29893391

RESUMO

The synthesis and surface functionalization of ZnO nanoparticles were performed, with attention being paid to the possible bio-related applications in light-triggered reactive oxygen species generation. l-Cysteine molecules possessing sulfur atoms with high affinity to the ZnO surface proved to be interesting ligands, providing the improvement of the colloidal stability of the nanoparticles in aqueous solutions, and enhancing the efficiency of reactive oxygen species generation for antibacterial and photodynamic-based cancer treatment applications. Depending on the amount of the sulfur-containing ligands available for bonding to the ZnO nanoparticles, the ion exchange process occurring at the ZnO surface was observed. Both the experimental measurements and numerical calculations, performed in the frame of density functional theory, showed that the surface adhered OH- and SH- groups play a dominant role in the formation of the reactive oxygen species in the presence of ZnO nanoparticles in solution upon ultraviolet and blue light excitation. It was also observed that the efficiency of the reactive oxygen species generation process may also be enhanced by the adhesion of the SH- groups onto the surface of the ZnO clusters.

4.
Sci Rep ; 7: 41281, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112254

RESUMO

Laser induced white light emission was observed from porous graphene foam irradiated with a focused continuous wave beam of the infrared laser diode. It was found that the intensity of the emission increases exponentially with increasing laser power density, having a saturation level at ca. 1.5 W and being characterized by stable emission conditions. It was also observed that the white light emission is spatially confined to the focal point dimensions of the illuminating laser light. Several other features of the laser induced white light emission were also discussed. It was observed that the white light emission is highly dependent on the electric field intensity, allowing one to modulate the emission intensity. The electric field intensity ca. 0.5 V/µm was able to decrease the white light intensity by half. Origins of the laser-induced white light emission along with its characteristic features were discussed in terms of avalanche multiphoton ionization, inter-valence charge transfer and possible plasma build-up processes. It is shown that the laser-induced white light emission may be well utilized in new types of white light sources.

5.
Nanoscale ; 6(3): 1855-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24356665

RESUMO

Lanthanide doped, up-converting nanoparticles have found considerable interest as luminescent probes in the field of bio-detection. Although the nanoparticles (NPs) have already been successfully applied for fluorescent bio-imaging and bio-assays, the efficiency of the up-conversion process seems to be the bottle-neck in rigorous applications. In this work, we have shown enhancement of the up-conversion in colloidal α-NaYF4:Yb(3+), Tb(3+) doped nanocrystals owing to passivation of their surface. We have studied quantitatively the influence of the shell type (NaYF4 and CaF2), its thickness, as well as the shell deposition method (i.e. single thick shell vs. multi-layer shell) on the luminescent properties of the nanoparticles. The results showed that up to 40-fold up-conversion intensity enhancement may be obtained for the core-shell nanoparticles in comparison with the bare core nanoparticles, irrespective of the shell type and deposition method. Moreover, the suitability of the NaYF4:Yb(3+), Tb(3+) core-shell NPs for multi-color emission and spectral multiplexing has been presented.


Assuntos
Coloides/química , Elementos da Série dos Lantanídeos/química , Nanopartículas/química , Bioensaio , Fluoreto de Cálcio/química , Transferência de Energia , Fluoretos/química , Ligantes , Luminescência , Microscopia Eletrônica de Transmissão , Nanotecnologia/métodos , Óptica e Fotônica , Solventes , Ácido Trifluoracético/química , Difração de Raios X , Ítrio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...