Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1386517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812504

RESUMO

Acute myeloid leukemia (AML) is an aggressive heterogeneous disease characterized by several alterations of the immune system prompting disease progression and treatment response. The therapies available for AML can affect lymphocyte function, limiting the efficacy of immunotherapy while hindering leukemia-specific immune reactions. Recently, the treatment based on Venetoclax (VEN), a specific B-cell lymphoma 2 (BCL-2) inhibitor, in combination with hypomethylating agents (HMAs) or low-dose cytarabine, has emerged as a promising clinical strategy in AML. To better understand the immunological effect of VEN treatment, we characterized the phenotype and immune checkpoint (IC) receptors' expression on CD4+ and CD8+ T cells from AML patients after the first and second cycle of HMA in combination with VEN. HMA and VEN treatment significantly increased the percentage of naïve CD8+ T cells and TIM-3+ CD4+ and CD8+ T cells and reduced cytokine-secreting non-suppressive T regulatory cells (Tregs). Of note, a comparison between AML patients treated with HMA only and HMA in combination with VEN revealed the specific contribution of VEN in modulating the immune cell repertoire. Indeed, the reduction of cytokine-secreting non-suppressive Tregs, the increased TIM-3 expression on CD8+ T cells, and the reduced co-expression of PD-1 and TIM-3 on both CD4+ and CD8+ T cells are all VEN-specific. Collectively, our study shed light on immune modulation induced by VEN treatment, providing the rationale for a novel therapeutic combination of VEN and IC inhibitors in AML patients.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Linfócitos T CD8-Positivos , Receptor Celular 2 do Vírus da Hepatite A , Leucemia Mieloide Aguda , Receptor de Morte Celular Programada 1 , Sulfonamidas , Linfócitos T Reguladores , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonamidas/administração & dosagem , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Pessoa de Meia-Idade , Idoso , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Feminino , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Adulto , Idoso de 80 Anos ou mais
2.
Cell Rep ; 43(2): 113794, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363677

RESUMO

Acute myeloid leukemia (AML) progression is influenced by immune suppression induced by leukemia cells. ZEB1, a critical transcription factor in epithelial-to-mesenchymal transition, demonstrates immune regulatory functions in AML. Silencing ZEB1 in leukemic cells reduces engraftment and extramedullary disease in immune-competent mice, activating CD8 T lymphocytes and limiting Th17 cell expansion. ZEB1 in AML cells directly promotes Th17 cell development that, in turn, creates a self-sustaining loop and a pro-invasive phenotype, favoring transforming growth factor ß (TGF-ß), interleukin-23 (IL-23), and SOCS2 gene transcription. In bone marrow biopsies from AML patients, immunohistochemistry shows a direct correlation between ZEB1 and Th17. Also, the analysis of ZEB1 expression in larger datasets identifies two distinct AML groups, ZEB1high and ZEB1low, each with specific immunological and molecular traits. ZEB1high patients exhibit increased IL-17, SOCS2, and TGF-ß pathways and a negative association with overall survival. This unveils ZEB1's dual role in AML, entwining pro-tumoral and immune regulatory capacities in AML blasts.


Assuntos
Leucemia Mieloide Aguda , Células Th17 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Proliferação de Células , Fator de Crescimento Transformador beta , Homeobox 1 de Ligação a E-box em Dedo de Zinco
3.
Clin Cancer Res ; 28(14): 3141-3155, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35349670

RESUMO

PURPOSE: The stromal and immune bone marrow (BM) landscape is emerging as a crucial determinant for acute myeloid leukemia (AML). Regulatory T cells (Treg) are enriched in the AML microenvironment, but the underlying mechanisms are poorly elucidated. Here, we addressed the effect of IFNγ released by AML cells in BM Treg induction and its impact on AML prognosis. EXPERIMENTAL DESIGN: BM aspirates from patients with AML were subdivided according to IFNG expression. Gene expression profiles in INFγhigh and IFNγlow samples were compared by microarray and NanoString analysis and used to compute a prognostic index. The IFNγ release effect on the BM microenvironment was investigated in mesenchymal stromal cell (MSC)/AML cell cocultures. In mice, AML cells silenced for ifng expression were injected intrabone. RESULTS: IFNγhigh AML samples showed an upregulation of inflammatory genes, usually correlated with a good prognosis in cancer. In contrast, in patients with AML, high IFNG expression was associated with poor overall survival. Notably, IFNγ release by AML cells positively correlated with a higher BM suppressive Treg frequency. In coculture experiments, IFNγhigh AML cells modified MSC transcriptome by upregulating IFNγ-dependent genes related to Treg induction, including indoleamine 2,3-dioxygenase 1 (IDO1). IDO1 inhibitor abrogated the effect of IFNγ release by AML cells on MSC-derived Treg induction. In vivo, the genetic ablation of IFNγ production by AML cells reduced MSC IDO1 expression and Treg infiltration, hindering AML engraftment. CONCLUSIONS: IFNγ release by AML cells induces an immune-regulatory program in MSCs and remodels BM immunologic landscape toward Treg induction, contributing to an immunotolerant microenvironment. See related commentary by Ferrell and Kordasti, p. 2986.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Animais , Medula Óssea/metabolismo , Células da Medula Óssea , Interferon gama/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral
4.
Blood Adv ; 6(1): 87-99, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34535017

RESUMO

The contribution of the bone marrow (BM) immune microenvironment to acute myeloid leukemia (AML) development is well-known, but its prognostic significance is still elusive. Indoleamine 2,3-dioxygenase 1 (IDO1), which is negatively regulated by the BIN1 proto-oncogene, is an interferon-γ-inducible mediator of immune tolerance. With the aim to develop a prognostic IDO1-based immune gene signature, biological and clinical data of 982 patients with newly diagnosed, nonpromyelocytic AML were retrieved from public datasets and analyzed using established computational pipelines. Targeted transcriptomic profiles of 24 diagnostic BM samples were analyzed using the NanoString's nCounter platform. BIN1 and IDO1 were inversely correlated and individually predicted overall survival. PLXNC1, a semaphorin receptor involved in inflammation and immune response, was the IDO1-interacting gene retaining the strongest prognostic value. The incorporation of PLXNC1 into the 2-gene IDO1-BIN1 score gave rise to a powerful immune gene signature predicting survival, especially in patients receiving chemotherapy. The top differentially expressed genes between IDO1lowand IDO-1high and between PLXNC1lowand PLXNC1high cases further improved the prognostic value of IDO1 providing a 7- and 10-gene immune signature, highly predictive of survival and correlating with AML mutational status at diagnosis. Taken together, our data indicate that IDO1 is pivotal for the construction of an immune gene signature predictive of survival in AML patients. Given the emerging role of immunotherapies for AML, our findings support the incorporation of immune biomarkers into current AML classification and prognostication algorithms.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Leucemia Mieloide Aguda , Humanos , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Prognóstico , Transcriptoma , Microambiente Tumoral
5.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34771483

RESUMO

Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.

6.
Front Immunol ; 12: 662048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084166

RESUMO

Background: Within the bone marrow (BM), mature T cells are maintained under homeostatic conditions to facilitate proper hematopoietic development. This homeostasis depends upon a peculiar elevated frequency of regulatory T cells (Tregs) and immune regulatory activities from BM-mesenchymal stem cells (BM-MSCs). In response to BM transplantation (BMT), the conditioning regimen exposes the BM to a dramatic induction of inflammatory cytokines and causes an unbalanced T-effector (Teff) and Treg ratio. This imbalance negatively impacts hematopoiesis, particularly in regard to B-cell lymphopoiesis that requires an intact cross-talk between BM-MSCs and Tregs. The mechanisms underlying the ability of BM-MSCs to restore Treg homeostasis and proper B-cell development are currently unknown. Methods: We studied the role of host radio-resistant cell-derived CD40 in restoring Teff/Treg homeostasis and proper B-cell development in a murine model of BMT. We characterized the host cellular source of CD40 and performed radiation chimera analyses by transplanting WT or Cd40-KO with WT BM in the presence of T-reg and co-infusing WT or - Cd40-KO BM-MSCs. Residual host and donor T cell expansion and activation (cytokine production) and also the expression of Treg fitness markers and conversion to Th17 were analyzed. The presence of Cd40+ BM-MSCs was analyzed in a human setting in correlation with the frequency of B-cell precursors in patients who underwent HSCT and variably developed acute graft-versus-host (aGVDH) disease. Results: CD40 expression is nearly undetectable in the BM, yet a Cd40-KO recipient of WT donor chimera exhibited impaired B-cell lymphopoiesis and Treg development. Lethal irradiation promotes CD40 and OX40L expression in radio-resistant BM-MSCs through the induction of pro-inflammatory cytokines. OX40L favors Teff expansion and activation at the expense of Tregs; however, the expression of CD40 dampens OX40L expression and restores Treg homeostasis, thus facilitating proper B-cell development. Indeed, in contrast to dendritic cells in secondary lymphoid organs that require CD40 triggers to express OX40L, BM-MSCs require CD40 to inhibit OX40L expression. Conclusions: CD40+ BM-MSCs are immune regulatory elements within BM. Loss of CD40 results in uncontrolled T cell activation due to a reduced number of Tregs, and B-cell development is consequently impaired. GVHD provides an example of how a loss of CD40+ BM-MSCs and a reduction in B-cell precursors may occur in a human setting.


Assuntos
Transplante de Medula Óssea , Medula Óssea/imunologia , Antígenos CD40/genética , Regulação da Expressão Gênica/imunologia , Homeostase/imunologia , Células-Tronco Mesenquimais/imunologia , Ligante OX40/genética , Estresse Fisiológico/imunologia , Adulto , Idoso , Animais , Medula Óssea/fisiologia , Células da Medula Óssea/imunologia , Antígenos CD40/imunologia , Feminino , Homeostase/genética , Humanos , Ativação Linfocitária/imunologia , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Pessoa de Meia-Idade , Ligante OX40/imunologia , Linfócitos T Reguladores/imunologia , Condicionamento Pré-Transplante , Adulto Jovem
8.
Blood Adv ; 4(20): 5011-5024, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33057635

RESUMO

Somatic TP53 mutations and 17p deletions with genomic loss of TP53 occur in 37% to 46% of acute myeloid leukemia (AML) with adverse-risk cytogenetics and correlate with primary induction failure, high risk of relapse, and dismal prognosis. Herein, we aimed to characterize the immune landscape of TP53-mutated AML and determine whether TP53 abnormalities identify a patient subgroup that may benefit from immunotherapy with flotetuzumab, an investigational CD123 × CD3 bispecific dual-affinity retargeting antibody (DART) molecule. The NanoString PanCancer IO360 assay was used to profile 64 diagnostic bone marrow (BM) samples from patients with TP53-mutated (n = 42) and TP53-wild-type (TP53-WT) AML (n = 22) and 45 BM samples from patients who received flotetuzumab for relapsed/refractory (R/R) AML (15 cases with TP53 mutations and/or 17p deletion). The comparison between TP53-mutated and TP53-WT primary BM samples showed higher expression of IFNG, FOXP3, immune checkpoints, markers of immune senescence, and phosphatidylinositol 3-kinase-Akt and NF-κB signaling intermediates in the former cohort and allowed the discovery of a 34-gene immune classifier prognostic for survival in independent validation series. Finally, 7 out of 15 patients (47%) with R/R AML and TP53 abnormalities showed complete responses to flotetuzumab (<5% BM blasts) on the CP-MGD006-01 clinical trial (NCT #02152956) and had significantly higher tumor inflammation signature, FOXP3, CD8, inflammatory chemokine, and PD1 gene expression scores at baseline compared with nonresponders. Patients with TP53 abnormalities who achieved a complete response experienced prolonged survival (median, 10.3 months; range, 3.3-21.3 months). These results encourage further study of flotetuzumab immunotherapy in patients with TP53-mutated AML.


Assuntos
Anticorpos Biespecíficos , Leucemia Mieloide Aguda , Citogenética , Humanos , Imunoterapia , Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteína Supressora de Tumor p53/genética
9.
Front Oncol ; 10: 1225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793492

RESUMO

The contribution of cell-extrinsic factors in Acute Myeloid Leukemia (AML) generation and persistence has gained interest. Bitter taste receptors (TAS2Rs) are G protein-coupled receptors known for their primary role as a central warning signal to induce aversion toward noxious or harmful substances. Nevertheless, the increasing amount of evidence about their extra-oral localization has suggested a wider function in sensing microenvironment, also in cancer settings. In this study, we found that AML cells express functional TAS2Rs. We also highlighted a significant association between the modulation of some TAS2Rs and the poor-prognosis AML groups, i.e., TP53- and TET2-mutated, supporting a potential role of TAS2Rs in AML cell biology. Gene expression profile analysis showed that TAS2R activation with the prototypical agonist, denatonium benzoate, significantly modulated a number of genes involved in relevant AML cellular processes. Functional assay substantiated molecular data and indicated that denatonium reduced AML cell proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation. Moreover, denatonium exposure impaired AML cell motility and migratory capacity, and inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation. In conclusion, our results in AML cells expand the observation of cancer TAS2R expression to the setting of hematological neoplasms and shed light on a role of TAS2Rs in the extrinsic regulation of leukemia cell functions.

11.
Front Oncol ; 9: 1135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31709192

RESUMO

Mesenchymal stromal cells (MSCs) have, for a long time, been recognized as pivotal contributors in the set up and maintenance of the hematopoietic stem cell (HSC) niche, as well as in the development and differentiation of the lympho-hematopoietic system. MSCs also have a unique immunomodulatory capacity, which makes them able to affect, both in vitro and in vivo, the function of immune cells. These features, namely the facilitation of stem cell engraftment and the inhibition of lymphocyte responses, have both proven essential for successful allogeneic stem cell transplantation (allo-SCT), which remains the only curative option for several hematologic malignancies. For example, in steroid-refractory acute graft-vs. host disease developing after allo-SCT, MSCs have produced significant results and are now considered a treatment option. However, more recently, the other side of the MSC coin has been unveiled, because of their emerging role in creating a protective and immune-tolerant microenvironment able to support the survival of leukemic cells and affect the response to therapies. In this light, it has been proposed that the failure of current treatments to efficiently override the stroma-mediated protection of leukemic cells accounts for the high rate of relapse in acute myeloid leukemia, at least in part. In this review, we will focus on emerging microenvironment-driven mechanisms conferring a survival advantage to leukemic cells overt physiological HSCs. This body of evidence increasingly highlights the opportunity to consider tumor-microenvironment interactions when designing new therapeutic strategies.

12.
Stem Cell Res Ther ; 9(1): 271, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359303

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) are an essential element of the bone marrow (BM) microenvironment, playing a crucial function in regulating hematopoietic stem cell proliferation and differentiation. Recent findings have outlined a putative role for MSCs in hematological malignancy development. So far, conflicting results have been collected concerning MSC abnormalities in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). In particular, a considerable amount of evidence has been accumulated strongly supporting a permissive role of MSCs in malignancy evolution to MDS, while a potentially causative or promoting function performed by MSCs in AML has not yet been fully clarified. Here, we compared MSCs isolated from healthy, MDS, and AML subjects to investigate MSC alterations and to emphasize putative common and/or diverse features. METHODS: We isolated and expanded MSCs from AML patients (AML-MSCs) and MDS patients (MDS-MSCs), and we analyzed and compared their phenotypic and functional properties with respect to each other and versus healthy donor-derived MSCs (HD-MSCs). RESULTS: We found that stable MSC cultures could be easily established from HD and MDS mononuclear BM-derived cells, while a substantial fraction (25%) of AML patients failed to yield MSCs. Nevertheless, isolated MDS-MSCs and AML-MSCs, as well as HD-MSCs, contained the basic features of MSCs. Indeed, they displayed similar surface marker expression and efficient capacity to differentiate versus osteogenic and adipogenic lineage in vitro. We also proved that MDS-MSCs and AML-MSCs, analyzed by fluorescence in-situ hybridization, did not harbor leukemic cell cytogenetic abnormalities. Moreover, MDS-MSCs and AML-MSCs were similar in terms of ability to sustain AML cell viability and immune-regulatory capacity. However, we were also able to detect some differences between AML-MSCs and MDS-MSCs. Indeed, we found that the frequency of rescued MSCs was lower in the AML group than in the HD and MDS groups, suggesting that a reduced number of MSC precursors could inhabit AML BM. Instead, MDS-MSCs showed the lowest proliferative capacity, reflecting some intrinsic and particular defect. CONCLUSIONS: Overall, our results elucidated that MDS-MSCs and AML-MSCs did not show macroscopic and/or tumor-related defects, but both displayed functional features potentially contributing to favor a leukemia-protective milieu.


Assuntos
Biomarcadores Tumorais/genética , Leucemia Mieloide Aguda/patologia , Células-Tronco Mesenquimais/patologia , Síndromes Mielodisplásicas/patologia , Proteínas de Neoplasias/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Proteínas de Neoplasias/metabolismo , Cultura Primária de Células , Risco
13.
Cancers (Basel) ; 10(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932105

RESUMO

Acute myeloid leukemia (AML) is a disease, which mainly affects the elderly population. Unfortunately, the prognosis of patients aged >65 years is dismal, with 1-year overall survival approaching 10% with conventional therapies. The hypothesis of harnessing the immune system against cancer, including leukemia, has been postulated for a long time, and several clinical attempts have been made in this field. In the last years, we increased our knowledge about the interplay between AML and immune cells, but no major improvement has been translated, up to now, from bench to bedside. However, the outstanding results coming from the modern immuno-oncology trials with new drugs have granted a new interest for immunotherapy in AML. Accordingly, the elderly population represents an ideal target, given the low percentage of patients eligible for allogeneic stem cell transplant. With that in mind, in the era of immunotherapy, we consider immunosenescence as the optimal background to start investigating a biology-driven approach to AML therapy in the elderly. By taking into account the physiological age-related changes of immune response, more personalized and tailored use of the new drugs and strategies harnessing the immune system against AML, has the potential to increase their efficacy and impact on clinical outcomes.

14.
Front Immunol ; 8: 1330, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29097997

RESUMO

Natural killer (NK) cells are circulating CD3- lymphocytes, which express CD56 or CD16 and an array of inhibitory receptors, called killer-immunoglobulin-like receptors (KIRs). Alloreactive KIR-ligand mismatched NK cells crucially mediate the innate immune response and have a well-recognized antitumor activity. Adoptive immunotherapy with alloreactive NK cells determined promising clinical results in terms of response in acute myeloid leukemia (AML) patients and several data demonstrated that response can be influenced by the composition of NK graft. Several data show that there is a correlation between NK alloreactivity and clinical outcome: in a cohort of AML patients who received NK infusion with active disease, more alloreactive NK cell clones were found in the donor repertoire of responders than in non-responders. These findings demonstrate that the frequency of alloreactive NK cell clones influence clinical response in AML patients undergoing NK cell immunotherapy. In this work, we will review the most recent preclinical and clinical data about the impact of alloreactive NK cells features other than frequency of alloreactive clones and cytokine network status on their anti-leukemic activity. A better knowledge of these aspects is critical to maximize the effects of this therapy in AML patients.

15.
Cytotherapy ; 19(12): 1447-1461, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28917627

RESUMO

BACKGROUND AIMS: Growing evidence supports the therapeutic potential of bone marrow (BM)-derived stem/progenitor cells for end-stage liver disease (ESLD). We recently demonstrated that CD133+ stem/progenitor cell (SPC) reinfusion in patients with ESLD is feasible and safe and improve, albeit transiently, liver function. However, the mechanism(s) through which BM-derived SPCs may improve liver function are not fully elucidated. METHODS: Here, we characterized the circulating SPCs compartment of patients with ESLD undergoing CD133+ cell therapy. Next, we set up an in vitro model mimicking SPCs/liver microenvironment interaction by culturing granulocyte colony-stimulating factor (G-CSF)-mobilized CD133+and LX-2 hepatic stellate cells. RESULTS: We found that patients with ESLD show normal basal levels of circulating hematopoietic and endothelial progenitors with impaired clonogenic ability. After G-CSF treatment, patients with ESLD were capable to mobilize significant numbers of functional multipotent SPCs, and interestingly, this was associated with increased levels of selected cytokines potentially facilitating SPC function. Co-culture experiments showed, at the molecular and functional levels, the bi-directional cross-talk between CD133+ SPCs and human hepatic stellate cells LX-2. Human hepatic stellate cells LX-2 showed reduced activation and fibrotic potential. In turn, hepatic stellate cells enhanced the proliferation and survival of CD133+ SPCs as well as their endothelial and hematopoietic function while promoting an anti-inflammatory profile. DISCUSSION: We demonstrated that the interaction between CD133+ SPCs from patients with ESLD and hepatic stellate cells induces significant functional changes in both cellular types that may be instrumental for the improvement of liver function in cirrhotic patients undergoing cell therapy.


Assuntos
Antígeno AC133/metabolismo , Doença Hepática Terminal/terapia , Células Estreladas do Fígado/citologia , Fígado/citologia , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Proliferação de Células , Técnicas de Cocultura , Doença Hepática Terminal/patologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Células Estreladas do Fígado/fisiologia , Humanos , Fígado/metabolismo , Fígado/patologia , Neovascularização Fisiológica , Células-Tronco/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo
16.
Stem Cell Res Ther ; 6: 170, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26353774

RESUMO

INTRODUCTION: Due to their immunomodulatory properties, mesenchymal stromal cells (MSCs) have been used for auto-immune disease treatment. Crohn disease (CD) and ulcerative colitis are two major inflammatory bowel diseases (IBDs), resulting from pathological immune responses to environmental or microbial antigens. Preclinical and clinical studies have suggested that MSC-based cellular therapy hold promising potential for IBD treatment. However, open issues include the selection of the proper cell dose, the source and the optimal route of administration of MSCs for more effective results. Platelet lysate has gained clinical interest due to its efficacy in accelerating wound healing. Thus, we propose to combine the administration of MSCs with a human umbilical cord blood-derived platelet lysate (hCBPL) as a novel strategy to improve MSC-based therapy for IBD resolution. METHODS: Colitis was induced in 8-week-old C57BL/6J mice by daily oral administration of dextran sulphate sodium (DSS) (1.5 % w/v in tap water) for 9 days. MSCs were isolated from adipose tissue of CD patients (adCD-MSCs), expanded in proliferation medium, resuspended in hCBPL or PBS and administrated via enema for three times (1 × 10(6) cells/mouse/time) every other day starting on day +7 from DSS induction. The colitis evolution was evaluated by daily monitoring of body weight, stool consistency and bleeding. Histopathological analysis was performed. Inflammatory cytokine plasma levels were determined. adCD-MSCs stained with lipophilic membrane dye Nile Red, were injected in DSS mice as described above. Colon section of mice sacrificed 24 hours after last cell administration, were analyzed by confocal microscopy. RESULTS: We found that adCD-MSCs could be easily isolated and expanded from CD patients. Upon injection, adCD-MSCs exerted a therapeutic effect on DSS-induced colitis. Moreover, hCBPL increased adCD-MSCs efficacy by significantly reducing colitis scores, extension of the colon inflamed area and plasma levels of inflammatory mediators. Finally, Nile Red staining of MSCs is very efficient, stable and does not impair their vitality and function. Nile Red-labelling was clearly detected in the colitic area of adCD-MSCs injected mice and it was significantly brighter in the colon sections of mice that had received adCD-MSCs/hCBPL. CONCLUSIONS: In summary, with this study we propose a novel and promising adCD-MSC/hCBPL-based therapy for refractory IBDs.


Assuntos
Plaquetas/imunologia , Colite/terapia , Doença de Crohn/sangue , Transplante de Células-Tronco Mesenquimais/métodos , Tecido Adiposo/citologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL
17.
J Immunol Res ; 2015: 526195, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26247040

RESUMO

In vitro differentiation of mesenchymal stromal cells (MSC) into osteocytes (human differentiated osteogenic cells, hDOC) before implantation has been proposed to optimize bone regeneration. However, a deep characterization of the immunological properties of DOC, including their effect on dendritic cell (DC) function, is not available. DOC can be used either as cellular suspension (detached, Det-DOC) or as adherent cells implanted on scaffolds (adherent, Adh-DOC). By mimicking in vitro these two different routes of administration, we show that both Det-DOC and Adh-DOC can modulate DC functions. Specifically, the weak downregulation of CD80 and CD86 caused by Det-DOC on DC surface results in a weak modulation of DC functions, which indeed retain a high capacity to induce T-cell proliferation and to generate CD4(+)CD25(+)Foxp3(+) T cells. Moreover, Det-DOC enhance the DC capacity to differentiate CD4(+)CD161(+)CD196(+) Th17-cells by upregulating IL-6 secretion. Conversely, Adh-DOC strongly suppress DC functions by a profound downregulation of CD80 and CD86 on DC as well as by the inhibition of TGF-ß production. In conclusion, we demonstrate that different types of DOC cell preparation may have a different impact on the modulation of the host immune system. This finding may have relevant implications for the design of cell-based tissue-engineering strategies.


Assuntos
Comunicação Celular , Diferenciação Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/citologia , Osteócitos/metabolismo , Técnicas de Cocultura , Citocinas , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Osteócitos/citologia , Fenótipo , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
18.
Exp Hematol ; 43(4): 268-76.e5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25584868

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunosuppressive molecule expressed in some subsets of normal and neoplastic cells. Mature human dendritic cells (DCs) have been shown to express IDO1, but little is known about its expression and function during DC differentiation from bone marrow hematopoietic stem/progenitor cells (HSPCs). Here, we show that during in vitro differentiation along the myeloid DC lineage, CD34(+) HSPCs acquire IDO1 expression, which acts in a tolerogenic manner by inducing a population of fully functional CD4(+)CD25(+) FOXP3(+) T-regulatory cells. Phenotypically, CD1a(+)CD14(-) HPSC-derived DCs expressed IDO1, langerin, CD11b, and CD1c. Cell-sorting experiments demonstrated that IDO1 expression is found in a subset of CD1a(+)CD14(-)langerin(+) cells, expressing CD103, which is capable of inducing T-regulatory cells in an IDO1-dependent manner. In conclusion, DC differentiation from CD34(+) HSPCs results in the expression of a functionally active IDO1 protein in CD1a(+)langerin(+), CD103-expressing DCs. These data point toward IDO1 expression as part of a tolerogenic signature during DC development.


Assuntos
Antígenos CD34/imunologia , Antígenos CD/imunologia , Células Dendríticas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cadeias alfa de Integrinas/imunologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Linfócitos T Reguladores/imunologia , Western Blotting , Células Cultivadas , Humanos , Microscopia de Fluorescência
19.
Expert Rev Hematol ; 7(6): 807-18, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25227702

RESUMO

Functional interplay between acute myeloid leukemia (AML) cells and the bone marrow microenvironment is a distinctive characteristic of this hematological cancer. Indeed, a large body of evidence suggests that proliferation, survival and drug resistance of AML are sustained and modulated by the bone marrow immunosuppressive microenvironment, where both innate and adaptive immune responses are profoundly deregulated. Furthermore, the presence of a number of different immunosuppressive mechanisms results in massive immune deregulation, which causes the eventual escape from natural immune control. Modulating the immune system, as documented by 40 years of stem cell transplantation, may improve survival of AML patients, as the immune system is clearly able to recognize and attack leukemic cells. The understanding of the factors responsible for the escape from immune destruction in AML, which becomes more prominent with disease progression, is necessary for the development of innovative immunotherapeutic treatment modalities in AML.


Assuntos
Tolerância Imunológica , Imunidade , Imunoterapia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Animais , Humanos , Imunoterapia/métodos , Leucemia Mieloide Aguda/patologia , Transplante de Células-Tronco , Microambiente Tumoral
20.
J Immunol ; 192(3): 1231-40, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24391212

RESUMO

Dendritic cells (DCs) are professional APCs that have a role in the initiation of adaptive immune responses and tolerance. Among the tolerogenic mechanisms, the expression of the enzyme IDO1 represents an effective tool to generate T regulatory cells. In humans, different DC subsets express IDO1, but less is known about the IDO1-related enzyme IDO2. In this study, we found a different pattern of expression and regulation between IDO1 and IDO2 in human circulating DCs. At the protein level, IDO1 is expressed only in circulating myeloid DCs (mDCs) and is modulated by PGE2, whereas IDO2 is expressed in both mDCs and plasmacytoid DCs and is not modulated by PGE2. In healthy subjects, IDO1 expression requires the presence of PGE2 and needs continuous transcription and translation, whereas IDO2 expression is constitutive, independent from suppressor of cytokine signaling 3 activity. Conversely, in patients suffering from inflammatory arthritis, circulating DCs express both IDO1 and IDO2. At the functional level, both mDCs and plasmacytoid DCs generate T regulatory cells through an IDO1/IDO2-dependent mechanism. We conclude that, in humans, whereas IDO1 provides an additional mechanism of tolerance induced by proinflammatory mediators, IDO2 is stably expressed in steady-state conditions and may contribute to the homeostatic tolerogenic capacity of DCs.


Assuntos
Células Dendríticas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Linfócitos T Reguladores/imunologia , Artrite Psoriásica/imunologia , Artrite Psoriásica/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Células Cultivadas , Células Dendríticas/classificação , Células Dendríticas/enzimologia , Dinoprostona/farmacologia , Dinoprostona/fisiologia , Indução Enzimática/efeitos dos fármacos , Homeostase , Humanos , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Monócitos/citologia , Monócitos/efeitos dos fármacos , Especificidade de Órgãos , Biossíntese de Proteínas/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/patologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Triptofano/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...