Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-22616842

RESUMO

A six-component handrim dynamometer (HRD) is a dynamometer that rotates around the wheel axle during measurements. For this kind of dynamometer, static zero level calibration is insufficient because the proportion of the forces (i.e. handrim weight and centrifugal force) measured by each sensor varies according to the angular position and velocity of the dynamometer. The dynamic calibration presented in this paper is based on the direct correction of the sensor signals using Fourier's polynomials that take into account the influences of both the handrim weight distribution on the sensors with respect to the wheel's angular position and the effect of the wheel's angular velocity. When these corrections were applied to the signals produced by the sensors while the HRD was rotating and no effort was being exerted on the handrim, the calculated forces and torques remained close to zero, as expected. Based on these results, the wheel dynamometer can be confidently used for studying manual wheelchair locomotion under various real conditions. The method could also be applied in other situations in which a dynamometer rotates during measurements.


Assuntos
Cadeiras de Rodas , Fenômenos Biomecânicos , Calibragem , Desenho de Equipamento , Movimento (Física) , Torque
2.
Med Eng Phys ; 35(3): 289-97, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23200111

RESUMO

Currently, rolling resistance and wheelchair stability during manual wheelchair propulsion can be assessed from the loads applied on the front and rear wheels, which are determined in a static condition. However, a user's actions on the wheelchair would change these loads during locomotion, which should affect both the rolling resistance and wheelchair stability. The goal of this study was to verify these assumptions and assess how much the rolling resistance and wheelchair stability are affected by the user's actions during propulsion. For that purpose, a mechanical model was developed using measurements of an instrumented wheelchair equipped with several six-component dynamometers. Experiments were performed by three subjects propelling the instrumented wheelchair over flat ground. The results showed variations over wide ranges of the fore-aft distribution of the total load, rolling resistance, wheelchair stability, wheelchair velocity and mechanical power dissipated by the rolling resistance during the propulsion cycle. In addition, the time courses of all these variables differed with the subject. Finally, this study demonstrated the possibility of assessing intra-cycle values of both rolling resistance and wheelchair stability during manual wheelchair displacements in the field, which provides a technical step towards evaluating a wheelchair user in his daily environment.


Assuntos
Braço/fisiologia , Desenho de Equipamento , Cadeiras de Rodas , Fenômenos Biomecânicos , Desaceleração , Humanos , Modelos Teóricos , Movimento , Estresse Mecânico
3.
J Appl Biomech ; 24(2): 140-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18579906

RESUMO

The development of composite material poles since 1960 has played a prominent part in performance improvement in pole-vaulting. Previous studies devoted to pole-vaulting models were based on constant mechanical characteristics. It is thus necessary to identify the local bending rigidities of the pole to build realistic pole-vaulting models. Updating methods developed for dynamic structure studies allow us to describe local mechanical characteristics. These methods are based on the comparison between experimental results and those determined numerically by finite element models. This study presents an adaptation of these methods to determine the local bending rigidities of the pole. The updating technique is validated by a deflection test of a homogeneous beam. Then, a study of the model sensitivity is carried out to investigate the procedure robustness. Finally, the updating method is applied to an old design pole and to a recent one. The results obtained vary greatly from one pole to the other; they highlight the evolutions in pole design.


Assuntos
Análise de Elementos Finitos , Equipamentos Esportivos , Esportes , Humanos , Análise e Desempenho de Tarefas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...