Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38995335

RESUMO

The Baihe River, a tributary of the Yellow River located in the Ngawa Tibetan and Qiang Autonomous Prefecture in Northern Sichuan, is surrounded by natural resources suitable for animal development. However, the impact of livestock activities water microbiome in this area remains unexplored. This study collected water samples from areas with captive yaks and sheep (NS and YS) and compared them with water samples from Hongyuan Baihe River. Through amplicon sequencing, we investigated the impact of livestock activities on aquatic microorganisms. Diversity analysis, significance analysis, and microbial phenotype prediction indicated a significant decrease in microbial community diversity and function in the NS and YS groups. Pathogenic microorganisms such as Bacteroidales and Thelebolaceae and antibiotic-resistant bacteria genes such as Flavobacteriales and Burkholderiaceae were significantly higher in livestock breeding areas. Additionally, bacteria adapted to acidification, hypoxia, and eutrophication (e.g., Acidobacteria, Flavobacteriales, Deltaproteobacteria, Rhodobacterales) were more abundant in these areas. Our results demonstrate that livestock activities significantly alter the structure and function of microbial communities in surrounding water bodies, deteriorating water quality.

2.
Front Cell Infect Microbiol ; 14: 1420389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983117

RESUMO

The intestinal microbiota assumes a pivotal role in modulating host metabolism, immune responses, overall health, and additional physiological dimensions. The structural and functional characteristics of the intestinal microbiota may cause alterations within the host's body to a certain extent. The composition of the gut microbiota is associated with environmental factors, dietary habits, and other pertinent conditions. The investigation into the gut microbiota of yaks remained relatively underexplored. An examination of yak gut microbiota holds promise in elucidating the complex relationship between microbial communities and the adaptive responses of the host to its environment. In this study, yak were selected from two distinct environmental conditions: those raised in sheds (NS, n=6) and grazed in Nimu County (NF, n=6). Fecal samples were collected from the yaks and subsequently processed for analysis through 16S rDNA and ITS sequencing methodologies. The results revealed that different feeding styles result in significant differences in the Alpha diversity of fungi in the gut of yaks, while the gut microbiota of captive yaks was relatively conserved. In addition, significant differences appeared in the abundance of microorganisms in different taxa, phylum Verrucomicrobiota was significantly enriched in group NF while Firmicutes was higher in group NS. At the genus level, Akkermansia, Paenibacillus, Roseburia, Dorea, UCG_012, Anaerovorax and Marvinbryantia were enriched in group NF while Desemzia, Olsenella, Kocuria, Ornithinimicrobium and Parvibacter were higher in group NS (P<0.05 or P<0.01). There was a significant difference in the function of gut microbiota between the two groups. The observed variations are likely influenced by differences in feeding methods and environmental conditions both inside and outside the pen. The findings of this investigation offer prospective insights into enhancing the yak breeding and expansion of the yak industry.


Assuntos
Bactérias , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Animais , Bovinos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , China , Filogenia , DNA Bacteriano/genética , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , DNA Ribossômico/genética , DNA Ribossômico/química , Análise de Sequência de DNA , Biodiversidade
3.
Animals (Basel) ; 14(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891617

RESUMO

Despite the crucial role of the gut microbiota in different physiological processes occurring in the animal body, reports regarding the gut microbiota of animals residing in different environmental conditions like high altitude and different climate settings are limited. The Qinghai-Tibetan Plateau is renowned for its extreme climatic conditions that provide an ideal environment for exploring the effects of high altitude and temperature on the microbiota of animals. Yaks have unique oxygen delivery systems and genes related to hypoxic response. Damxung, Nyêmo, and Linzhou counties in Tibet have variable altitudes and temperatures that offer distinct settings for studying yak adaptation to elevated terrains. The results of our study suggest that amplicon sequencing of V3-V4 and internal transcribed spacer 2 (ITS2) regions yielded 13,683 bacterial and 1912 fungal amplicon sequence variants (ASVs). Alpha and beta diversity indicated distinct microbial structures. Dominant bacterial phyla were Firmicutes, Bacteroidota, and Actinobacteriota. Genera UCG-005, Christensenellaceae_R-7_group, and Rikenellaceae_RC9_gut_group were dominant in confined yaks living in Damxung county (DXS) and yaks living in Linzhou county (LZS), whereas UCG-005 prevailed in confined yaks living in Nyêmo county (NMS). The linear discriminant analysis effect size (LEfSe) analysis highlighted genus-level differences. Meta-stat analysis revealed significant shifts in bacterial and fungal community composition in yaks at different high altitudes and temperatures. Bacterial taxonomic analysis revealed that two phyla and 32 genera differed significantly (p < 0.05). Fungal taxonomic analysis revealed that three phyla and four genera differed significantly (p < 0.05). Functional predictions indicated altered metabolic functions, especially in the digestive system of yaks living in NMS. This study reveals significant shifts in yak gut microbiota in response to varying environmental factors, such as altitude and temperature, shedding light on previously unexplored aspects of yak physiology in extreme environments.

4.
Animals (Basel) ; 14(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38672368

RESUMO

Pigs stand as a vital cornerstone in the realm of human sustenance, and the intricate composition of their intestinal microbiota wields a commanding influence over their nutritional and metabolic pathways. We employed multi-omic evaluations to identify microbial evidence associated with differential growth performance and metabolites, thereby offering theoretical support for the implementation of efficient farming practices for Tibetan pigs and establishing a robust foundation for enhancing pig growth and health. In this work, six Duroc × landrace × yorkshi (DLY) pigs and six Tibetan pigs were used for the experiment. Following humane euthanasia, a comprehensive analysis was undertaken to detect the presence of short-chain fatty acids (SCFAs), microbial populations, and metabolites within the colonic environment. Additionally, metabolites present within the plasma were also assessed. The outcomes of our analysis unveiled the key variables affecting the microbe changes causing the observed differences in production performance between these two distinct pig breeds. Specifically, noteworthy discrepancies were observed in the microbial compositions of DLY pigs, characterized by markedly higher levels of Alloprevotella and Prevotellaceae_UCG-003 (p < 0.05). These disparities, in turn, resulted in significant variations in the concentrations of acetic acid, propionic acid, and the cumulative SCFAs (p < 0.05). Consequently, the DLY pigs exhibited enhanced growth performance and overall well-being, which could be ascribed to the distinct metabolite profiles they harbored. Conversely, Tibetan pigs exhibited a significantly elevated relative abundance of the NK4A214_group, which consequently led to a pronounced increase in the concentration of L-cysteine. This elevation in L-cysteine content had cascading effects, further manifesting higher levels of taurine within the colon and plasma. It is noteworthy that taurine has the potential to exert multifaceted impacts encompassing microbiota dynamics, protein and lipid metabolism, as well as bile acid metabolism, all of which collectively benefit the pigs. In light of this, Tibetan pigs showcased enhanced capabilities in bile acid metabolism. In summation, our findings suggest that DLY pigs excel in their proficiency in short-chain fatty acid metabolism, whereas Tibetan pigs exhibit a more pronounced competence in the realm of bile acid metabolism. These insights underscore the potential for future studies to leverage these breed-specific differences, thereby contributing to the amelioration of production performance within these two distinct pig breeds.

5.
Nat Prod Res ; : 1-6, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124391

RESUMO

A new lignan named (-)-ginkgool-9-O-ß-glucopyranoside (1) together with eight known lignans (2-9) were isolated from Urtica triangularis subsp. pinnatifida (Hand.-Mazz.) C.J.Chen. According to the mass spectrometry and spectroscopic analyses, the gross structure and absolute configuration of the new lignan were elucidated. The cytotoxic effects of compounds 1-9 on BPH-1 cells and the docking results on type II 5α-reductase were analysed to evaluate their anti-BPH activity. The results showed better anti-BPH activity that compound 4 displaying an IC50 of 79.75 ± 3.68 µM than finasteride presenting an IC50 of 91.8 ± 3.74 µM. Compounds 1, 2 and 5 had moderate anti-BPH activity compared with finasteride.

6.
Microb Pathog ; 183: 106322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633503

RESUMO

During the last decade, researchers had started to focus on the relationship between intestinal parasitic infection and variation of intestinal microflora. Cryptosporidium is a widely known opportunistic and zoonotic pathogen. Several studies have shown that Cryptosporidium infection has impact to alter the gut microflora. However, there are only few studies referring to the fungal microflora changes in response to Cryptosporidium infection in highland ruminants. Therefore, the present study was performed for exploring the alternations of intestinal fungal microbiota in yaks after exposure to Cryptosporidium infection. In present study, Amplicon sequencing of ITS regions was used to study the variations of fungal microflora in yaks. After filtering the raw data, over 45 000 and 62 000 clean data were obtained in uninfected and infected yaks, respectively. By using alpha diversity analysis, it was found that there is no significant difference in the richness and evenness when positive samples were compared with negative ones, whereas intestinal fungal communities in different taxa in yaks were changed. The results of present study depicted that 2-phyla and 21-genera in the infected animals had significantly (P < 0.05) changed. These genera were Septoria, Coniothyrium, Cleistothelebolus, Bensingtonia, Cystobasidium, Filobasidium, Coprotus, Carex, Blumeria, Coprinellus, Leucosporidium, Phialophora, Isolepis, Ascobolus, Thecaphora, Mortierella, Urocystis, Symmetrospora and Lasiobolus. In addition, we found variations in 28 enzymes suggesting that the function of microbiota was also affected. It is concluded that there are drastic changes in the fungal microflora and microbiota functions after exposure to Cryptosporidium infection in yak. Our results help to focus on the prompt way for the development of new therapies to control Cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Microbioma Gastrointestinal , Micobioma , Animais , Bovinos , Cryptosporidium/genética
7.
Front Vet Sci ; 10: 1193558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396992

RESUMO

The yaks that inhabit the Tibetan plateau are a rare breed that is closely related to local economic development and human civilization. This ancient breed may have evolved a unique gut microbiota due to the hypoxic high-altitude environment. The gut microbiota is susceptible to external factors, but research regarding the effects of different feeding models on the gut fungal community in yaks remains scarce. In this study, we compared and analyzed the composition and variability of the gut fungal community among wild yaks (WYG), house-feeding domestic yaks (HFG), and grazing domestic yaks (GYG). The results revealed that Basidiomycota and Ascomycota were the most preponderant phyla in the gut fungal community, regardless of feeding models. Although the types of dominant fungal phyla did not change, their abundances did. Intergroup analysis of fungal diversity showed that the Shannon and Simpson indices of WYG and GYG were significantly higher than those of HFG. Fungal taxonomic analysis showed that there were 20 genera (Sclerostagonospora and Didymella) that were significantly different between WYG and GYG, and 16 genera (Thelebolus and Cystobasidium) that were significantly different between the WYG and HFG. Furthermore, the proportions of 14 genera (Claussenomyces and Papiliotrema) significantly decreased, whereas the proportions of eight genera (Stropharia and Lichtheimia) significantly increased in HFG as compared to GYG. Taken together, this study indicated that the gut fungal composition and structure differ significantly between yaks raised in different breeding groups.

8.
Mitochondrial DNA B Resour ; 5(1): 202-203, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33426272

RESUMO

In the present study, we report the complete mitochondrial genome of Niangya yak (Bos grunniens) and its phylogenetic inferences. The complete mitochondrial DNA is a circular molecule with 16,322 bp length consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a non-coding control region(D-loop). Both ND6 and 7 tRNAs (tRNA-Pro, tRNA-Glu, tRNA-Tyr, tRNA-Cys, tRNA-Asn, tRNA-Ala and tRNA-Gln) are encoded on the light strand, and the remaining genes are encoded on the heavy strand. The overall nucleotide composition is A(33.73%), T(27.28%), C(25.80%), G(13.19%) respectively. The content of C + G is 38.99%. Given that yak is indispensable for the Tibetan people, it is important to understand the genetic status of the population for further systematic genetics, evolutionary significance and protection of genetic resources. Therefore, to understand the evolutionary history of Niangya yak, the complete mitochondrial genome of Niangya yak was sequenced and compared with the mitochondrial genome of closely related Bos species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...