Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37445139

RESUMO

The milling of polymer composites is a process that ensures dimensional and shape accuracy and appropriate surface quality. The shaping of thin-walled elements is a challenge owing to their deformation. This article presents the results of milling polymer composites made of glass and carbon fibers saturated with epoxy resin. The milling of each material was conducted using different tools (tools with polycrystalline diamond inserts, physically coated carbide inserts with titanium nitride and uncoated carbide inserts) to show differences in feed force and deformation after the machining of individual thin-walled samples. In addition, the study used recurrence analysis to determine the most appropriate quantifications sensitive to changes occurring in milling different materials with the use of different tools. The study showed that the highest forces occurred in milling thin-walled carbon-fiber-reinforced plastics using uncoated tools and the highest feeds per revolution and cutting speeds. The use of a high feed per revolution (0.8 mm/rev) in carbon-fiber-reinforced plastics machining by uncoated tools resulted in a maximum feed force of 1185 N. A cutting speed of 400 m/min resulted in a force of 754 N. The largest permanent deformation occurred in the milling of glass-fiber-reinforced composite samples with uncoated tools. The permanent deformation value of this material was 0.88 mm. Low feed per revolution (0.1 mm/rev) resulted in permanent deformations of less than 0.30 mm for both types of materials. A change in feed per revolution had the most significant effect on the deformations of thin-walled polymer composites. The analysis of forces and deformation made it possible to conclude that high feed per revolution were not recommended in composite milling. In addition to the analysis of machining thin-walled composites, the novelty of this study was also the use of recurrence methods. Recurrence methods were used to determine the most appropriate quantifications. Determinism, averaged diagonal length and entropy have been shown to be suitable quantifications for determining the type of machined material and the tools used.

2.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431616

RESUMO

This paper presents the results of an experimental study on the impact of slide burnishing on surface roughness parameters (Sa, Sz, Sp, Sv, Ssk, and Sku), topography, surface layer microhardness, residual stress, and mean positron lifetime (τmean). In the study, specimens of X6CrNiTi18 stainless steel were subjected to slide burnishing. The experimental variables were feed and slide burnishing force. The slide burnishing process led to changes in the surface structure and residual stress distribution and increased the surface layer microhardness. After slide burnishing, the analyzed roughness parameters decreased compared with their pre-treatment (grinding) values. The slide burnishing of X6CrNiTi18 steel specimens increased their degree of strengthening e from 8.77% to 42.74%, while the hardened layer thickness gh increased after the treatment from about 10 µm to 100 µm. The maximum compressive residual stress was about 450 MPa, and the maximum depth of compressive residual stresses was gσ = 1.1 mm. The positron mean lifetime τmean slightly yet systematically increased with the increase in burnishing force F, while an increase in feed led to changes of a different nature.

3.
Materials (Basel) ; 15(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36363426

RESUMO

The paper presents the results of a study on the effectiveness of removing surface defects by brushing. Damage to machine components usually begins on their surface or in the surface layer area. This determines the development of methods, conditions, and process parameters that will positively affect the stereometric and physical properties of the surface layer. Experiments were conducted in which surface defects were generated on a specially designed test stand. By controlling the load and speed of the defect generator it was possible to affect the geometry, depth, and width of the surface defect. A FEM simulation of the brushing treatment was carried out in order to determine the effect of fibers passing through a surface defect in the form of a groove with a small depth and width. It was shown that for certain conditions of brushing treatment, surface defects could be removed effectively. Moreover, the microhardness of the surface layer after the brushing process was analyzed. Changes in microhardness due to brushing reached up to 50 µm for EN AW-2024 aluminum alloy and up to 150 µm for AZ91HP magnesium alloy. The results demonstrated that brushing was an effective method for strengthening the surface layer and that the value of strengthening in the area of defects depended on the effectiveness of their removal.

4.
Materials (Basel) ; 15(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295400

RESUMO

This paper presents results of ultrasonic non-destructive testing of carbon fibre-reinforced plastics (CFRPs) and glass-fibre reinforced plastics (GFRPs). First, ultrasonic C-scan analysis was used to detect real defects inside the composite materials. Next, the composite materials were subjected to drilling in the area of defect formation, and measured forces were used to analyse the drilling process using recurrence methods. Results have confirmed that recurrence methods can be used to detect defects formed inside a composite material during machining.

5.
Materials (Basel) ; 15(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36079331

RESUMO

The machining of thin-walled elements used in the aviation industry causes may problems, which create a need for studying ways in which undesirable phenomena can be prevented. This paper presents the results of a study investigating face milling thin-walled elements made of titanium alloy, aluminum alloy and polymer composite. These materials were milled with folding double-edge cutters with diamond inserts. The results of maximum vertical forces and surface roughness obtained after machining elements of different thicknesses and unsupported element lengths are presented. The results of deformation of milled elements are also presented. The results are then analyzed by ANOVA. It is shown that the maximum vertical forces decrease (in range 42-60%) while the ratio of vertical force amplitude to its average value increases (in range 55-65%) with decreasing element thickness and increasing unsupported element length. It is also demonstrated that surface roughness deteriorates (in range 100% for aluminum, 30% titanium alloy, 15% for CFRP) with small element thicknesses and long unsupported element lengths. Long unsupported element lengths also negatively (increasing deformation several times) affect the accuracy of machined elements.

6.
Materials (Basel) ; 14(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947216

RESUMO

This paper attempts to compare regular shot peening (RSP) and semi-random shot peening (SRSP). A characteristic of the first method is that the peening elements hit the treated surface in sequence, with a regular distance maintained between the dimples. The other method (SRSP) is a controlled modification of the shot-peening process, which is random by nature. The shot-peening method used in this study differs from conventional shot peening (shot blasting and vibratory shot peening) in that it allows controlled and repeatable determination of the configuration and distribution of impacts exerted by the peening element on the workpiece surface, which makes the process more repeatable and easier to model. Specimens of EN-AW 7075 aluminum alloy were used for testing. The following variables were used in the experiments: ball diameter, impact energy, and distance between the dimples. Microhardness distribution in the surface layer, 2D surface roughness, and surface topography were analyzed. FEM simulations of the residual stress distribution in the surface layer were performed. It has been found that regular shot peening results in reduced surface roughness, while semi-random shot peening leads to higher surface layer hardening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA