Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20109, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978308

RESUMO

The quantity and accuracy of satellite-geodetic measurements have increased over time, revolutionizing the monitoring of tectonic processes. Global Navigation Satellite System (GNSS) and satellite radar signals provide observations beyond ground deformation, including how earthquake and tsunami processes affect variations in the ionosphere. Here, we study the Hunga Tonga Hunga Ha'apai (HTHH) volcanic eruption 2022 and its associated tsunami propagation with the analysis GNSS derived Total Electron Content (TEC), Synthetic Aperture Radar (SAR) Sentinel-1 data, complemented with tide gauge observations. We utilize GNSS sites data within a ~ 5000 km radius from the volcanic eruption for estimating the ionospheric perturbation as Vertical TEC. We give evidence on the detection of acoustic gravity, internal gravity, and atmospheric Lamb waves signatures in the TEC perturbation. In particular, the internal gravity waves that concentrated in the southwest of Tonga, directly correlates with the observed tsunami propagation direction as accounted by the tide gauge measurements. However, the acoustic gravity wave signature in the TEC is dominant in the north direction suggesting a surface deformation, which could be verified using Sentinel-1A SAR amplitude data. The analysis presented herein shows that within 5 h of the volcanic eruption, the central part of the HTHH island landscape disappeared with the biggest explosion. The unprecedented detail resolved by integrating satellite data yields previously unknown details of the deformation of the 2022 HTHH volcano eruption.

2.
Sci Rep ; 10(1): 8399, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439958

RESUMO

Variability characterization of tsunami generation is quintessential for proper hazard estimation. For this purpose we isolate the variability which stems solely from earthquake spatial source complexity, by simulating tsunami inundation in the near-field with a simplified digital elevation model, using nonlinear shallow water equations. For earthquake rupture, we prescribe slip to have a log-normal probability distribution function and von Kármán correlation between each subfault pair, which we assume decreases with increasing euclidean distance between them. From the generated near-field inundation time-series, emanating from several thousand synthetic slip realizations across a magnitude 9 earthquake, we extract several tsunami intensity measures at the coast. Results show that all considered tsunami intensity measures and potential energy variability increase with increasing spatial slip correlations. Finally, we show that larger spatial slip correlations produce higher tsunami intensity measure exceedance probabilities within the near-field, which highlights the need to quantify the uncertainty of earthquake spatial slip correlation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...