Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Connect Tissue Res ; 62(2): 238-248, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31690137

RESUMO

Aim: The transcription factor Foxn1 is a regulator of scar-ended cutaneous wound healing in mice. However, the link between Foxn1 and Wnt signaling has not been explored in the context of cutaneous repair. Here, we investigate the effects of ß-catenin-dependent and -independent Wnt signaling represented by Wnt10a and Wnt11, respectively, in healing of full-thickness cutaneous wounds in C57BL/6 mice. Material and Methods: Quantitative polymerase chain reaction, western blot, and immunostaining were performed to assess the spatial and temporal distribution of Wnt10a, Wnt11, and ß-catenin in skin during wound healing. A co-culture system consisting of keratinocytes transfected with an adenoviral vector carrying Foxn1-GFP and dermal fibroblasts (DFs) was employed to determine the influence of epidermal signals on the capacity of DFs to produce extracellular matrix (ECM) proteins in vitro. The levels of types I and III collagen in conditioned media from DFs cultures were examined via enzyme-linked immunosorbent assay. Results: The expression of Wnt10a, Wnt11, and ß-catenin increased at post-wounding days 14 and 21 when tissue remodeling occurred. Foxn1::Egfp transgenic mice experiments demonstrated that Wnts were abundant in the epidermis adjacent to the wound margin and to a lesser extent in the dermis. The Wnt10a signal colocalized with Foxn1-eGFP in the epithelial tongue and neo-epidermis during the initial stage of wound healing. Foxn1 overexpression in keratinocytes affected DFs function related to collagen synthesis. Conclusions: Wnt ligands contribute to cutaneous wound repair, predominantly by engagement in ECM maturation. The data indicates a possible relationship between Foxn1 and Wnts in post-traumatic skin tissue.


Assuntos
Via de Sinalização Wnt , Cicatrização , Animais , Colágeno , Fibroblastos/metabolismo , Fatores de Transcrição Forkhead , Queratinócitos , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismo , Cicatrização/genética , beta Catenina/genética , beta Catenina/metabolismo
2.
Sci Rep ; 10(1): 20035, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208768

RESUMO

Human adipose-derived stem cells (ASCs) have potential to improve wound healing; however, their equivalents from domestic animals have received less attention as an alternative cell-based therapy for animals or even humans. Hypoxia is essential for maintaining stem cell functionality in tissue-specific niches. However, a cellular response to low oxygen levels has not been demonstrated in pig ASCs. Hence, the goal of our study was to characterize ASCs isolated from the subcutaneous fat of domestic pigs (pASCs) and examine the effect of hypoxia on their proteome and functional characteristics that might reproduce pASCs wound healing ability. Analysis of immunophenotypic and functional markers demonstrated that pASCs exhibited characteristics of mesenchymal stem cells. Proteomic analysis revealed 70 differentially abundant proteins between pASCs cultured under hypoxia (1% O2) or normoxia (21% O2). Among them, 42 proteins were enriched in the cells exposed to low oxygen, whereas 28 proteins showed decrease expression following hypoxia. Differentially expressed proteins were predominantly involved in cell metabolism, regulation of focal and intracellular communication, and attributed to wound healing. Functional examination of hypoxic pASCs demonstrated acquisition of contractile abilities in vitro. Overall, our results demonstrate that hypoxia pre-conditioning impacts the pASC proteome signature and contractile function in vitro and hence, they might be considered for further cell-based therapy study on wound healing.


Assuntos
Hipóxia/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Ontologia Genética , Células-Tronco Mesenquimais/patologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA