Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 95, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773224

RESUMO

BACKGROUND: Preclinical studies have demonstrated that VT1021, a first-in-class therapeutic agent, inhibits tumor growth via stimulation of thrombospondin-1 (TSP-1) and reprograms the tumor microenvironment. We recently reported data from the dose escalation part of a phase I study of VT1021 in solid tumors. Here, we report findings from the dose expansion phase of the same study. METHODS: We analyzed the safety and tolerability, clinical response, and biomarker profile of VT1021 in the expansion portion of the phase I study (NCT03364400). Safety/tolerability is determined by adverse events related to the treatment. Clinical response is determined by RECIST v1.1 and iRECIST. Biomarkers are measured by multiplexed ion beam imaging and enzyme-linked immunoassay (ELISA). RESULTS: First, we report the safety and tolerability data as the primary outcome of this study. Adverse events (AE) suspected to be related to the study treatment (RTEAEs) are mostly grade 1-2. There are no grade 4 or 5 adverse events. VT1021 is safe and well tolerated in patients with solid tumors in this study. We report clinical responses as a secondary efficacy outcome. VT1021 demonstrates promising single-agent clinical activity in recurrent GBM (rGBM) in this study. Among 22 patients with rGBM, the overall disease control rate (DCR) is 45% (95% confidence interval, 0.24-0.67). Finally, we report the exploratory outcomes of this study. We show the clinical confirmation of TSP-1 induction and TME remodeling by VT1021. Our biomarker analysis identifies several plasmatic cytokines as potential biomarkers for future clinical studies. CONCLUSIONS: VT1021 is safe and well-tolerated in patients with solid tumors in a phase I expansion study. VT1021 has advanced to a phase II/III clinical study in glioblastoma (NCT03970447).


The network of cells that surround a tumor, the tumor microenvironment, can help cancers to grow. Therapies targeting the tumor microenvironment may help to stop tumor growth. One such therapy is VT1021. In animal models, VT1021 treatment stops tumor cells from growing by changing the tumor microenvironment. Here, we have tested VT1021 in a clinical trial and found that VT1021 treatment is safe and well tolerated in patients with cancer. We also see signs of efficacy in some patients and observe evidence that VT1021 modifies the tumor microenvironment, which may help to block tumor growth. Finally, we identified several markers from the blood that may help to predict which patients will best benefit from VT1021 treatment. With further testing in clinical trials, VT1021 may be a useful therapy for patients with cancer.

2.
Commun Med (Lond) ; 4(1): 10, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218979

RESUMO

BACKGROUND: VT1021 is a cyclic peptide that induces the expression of thrombospondin-1 (TSP-1) in myeloid-derived suppressor cells (MDSCs) recruited to the tumor microenvironment (TME). TSP-1 reprograms the TME via binding to CD36 and CD47 to induce tumor and endothelial cell apoptosis as well as immune modulation in the TME. METHODS: Study VT1021-01 (ClinicalTrials.gov ID NCT03364400) used a modified 3 + 3 design. The primary objective was to determine the recommended Phase 2 dose (RP2D) in patients with advanced solid tumors. Safety, tolerability, and pharmacokinetics (PK) were assessed. Patients were dosed twice weekly intravenously in 9 cohorts (0.5-15.6 mg/kg). Safety was evaluated using CTCAE version 5.0 and the anti-tumor activity was evaluated by RECIST version 1.1. RESULTS: The RP2D of VT1021 is established at 11.8 mg/kg. VT1021 is well tolerated with no dose-limiting toxicities reported (0/38). The most frequent drug-related adverse events are fatigue (15.8%), nausea (10.5%), and infusion-related reactions (10.5%). Exposure increases proportionally from 0.5 to 8.8 mg/kg. The disease control rate (DCR) is 42.9% with 12 of 28 patients deriving clinical benefit including a partial response (PR) in one thymoma patient (504 days). CONCLUSIONS: VT1021 is safe and well-tolerated across all doses tested. RP2D has been selected for future clinical studies. PR and SD with tumor shrinkage are observed in multiple patients underscoring the single-agent potential of VT1021. Expansion studies in GBM, pancreatic cancer and other solid tumors at the RP2D have been completed and results will be communicated in a separate report.


It may be possible to treat cancers with therapies that modify the tumor microenvironment. This is the environment in the body in which tumors survive and grow and is composed of different types of cells. One such potential therapy is VT1021. Here, we conduct the first clinical trial to test this therapy in patients. We identify the optimal dose of the treatment to take into further studies, finding that VT1021 is safe and well tolerated by patients. We see some signs that the treatment is working in some patients and see evidence of modification of the tumor microenvironment. These findings help to inform further clinical trials of VT1021 to determine whether it is safe and effective in larger cohorts of patients.

3.
J Bacteriol ; 190(6): 1956-65, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18203834

RESUMO

CsrRS (or CovRS) is a two-component regulatory system that controls expression of multiple virulence factors in the important human pathogen group B Streptococcus (GBS). We now report global gene expression studies in GBS strains 2603V/R and 515 and their isogenic csrR and csrS mutants. Together with data reported previously for strain NEM316, the results reveal a conserved 39-gene CsrRS regulon. In vitro phosphorylation-dependent binding of recombinant CsrR to promoter regions of both positively and negatively regulated genes suggests that direct binding of CsrR can mediate activation as well as repression of target gene expression. Distinct patterns of gene regulation in csrR versus csrS mutants in strain 2603V/R compared to 515 were associated with different hierarchies of relative virulence of wild-type, csrR, and csrS mutants in murine models of systemic infection and septic arthritis. We conclude that CsrRS regulates a core group of genes including important virulence factors in diverse strains of GBS but also displays marked variability in the repertoire of regulated genes and in the relative effects of CsrS signaling on CsrR-mediated gene regulation. Such variation is likely to play an important role in strain-specific adaptation of GBS to particular host environments and pathogenic potential in susceptible hosts.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regulon/genética , Streptococcus agalactiae/genética , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/patogenicidade , Virulência/genética
4.
J Med Microbiol ; 56(Pt 7): 947-955, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17577061

RESUMO

Group B Streptococcus (GBS) resistant to erythromycin and clindamycin has been isolated with increasing frequency since the mid-1990s. This work studied GBS isolates from three US cities to determine the genetic basis of the macrolide resistance phenotype. ermB genes were amplified from five isolates collected in Boston, Pittsburgh and Seattle from infant and adult sources. Gene-walking methods were used to determine the chromosomal location of ermB and to identify associated genes. Southern mapping and random amplified polymorphic DNA (RAPD) analyses were used to distinguish the isolates. The ermB gene was present on the chromosome within a composite Tn917/Tn916-like transposon similar to one identified in Streptococcus pneumoniae. Four strains from Boston and Pittsburgh were serotype V and identical by Southern hybridization and RAPD analysis. The Seattle isolate was serotype Ib, with different patterns on RAPD analysis and Southern mapping. The composite transposon was integrated at an identical chromosomal site in all five isolates. The presence of this composite transposon in both GBS and pneumococci suggests that ermB-mediated macrolide resistance in streptococci may be due to the horizontal transfer of a mobile transposable element, and raises concern for further dissemination of high-grade erythromycin and clindamycin resistance among streptococcal species.


Assuntos
Antibacterianos/farmacologia , Clindamicina/farmacologia , Elementos de DNA Transponíveis/genética , Farmacorresistência Bacteriana/genética , Eritromicina/farmacologia , Streptococcus agalactiae/efeitos dos fármacos , Adulto , Proteínas de Bactérias/genética , Southern Blotting , Passeio de Cromossomo , Genes Bacterianos , Humanos , Recém-Nascido , Metiltransferases/genética , Dados de Sequência Molecular , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA , Sorotipagem , Streptococcus agalactiae/genética
5.
Proc Natl Acad Sci U S A ; 102(39): 13950-5, 2005 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-16172379

RESUMO

The development of efficient and inexpensive genome sequencing methods has revolutionized the study of human bacterial pathogens and improved vaccine design. Unfortunately, the sequence of a single genome does not reflect how genetic variability drives pathogenesis within a bacterial species and also limits genome-wide screens for vaccine candidates or for antimicrobial targets. We have generated the genomic sequence of six strains representing the five major disease-causing serotypes of Streptococcus agalactiae, the main cause of neonatal infection in humans. Analysis of these genomes and those available in databases showed that the S. agalactiae species can be described by a pan-genome consisting of a core genome shared by all isolates, accounting for approximately 80% of any single genome, plus a dispensable genome consisting of partially shared and strain-specific genes. Mathematical extrapolation of the data suggests that the gene reservoir available for inclusion in the S. agalactiae pan-genome is vast and that unique genes will continue to be identified even after sequencing hundreds of genomes.


Assuntos
Genoma Bacteriano , Streptococcus agalactiae/classificação , Streptococcus agalactiae/genética , Sequência de Aminoácidos , Cápsulas Bacterianas/genética , Sequência de Bases , Expressão Gênica , Genes Bacterianos , Variação Genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Streptococcus agalactiae/patogenicidade , Virulência/genética
6.
Infect Immun ; 73(5): 3096-103, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15845517

RESUMO

Group B Streptococcus (GBS) is an important pathogen of neonates, pregnant women, and immunocompromised individuals. GBS isolates associated with human infection produce one of nine antigenically distinct capsular polysaccharides which are thought to play a key role in virulence. A comparison of GBS polysaccharide structures of all nine known GBS serotypes together with the predicted amino acid sequences of the proteins that direct their synthesis suggests that the evolution of serotype-specific capsular polysaccharides has proceeded through en bloc replacement of individual glycosyltransferase genes with DNA sequences that encode enzymes with new linkage specificities. We found striking heterogeneity in amino acid sequences of synthetic enzymes with very similar functions, an observation that supports horizontal gene transfer rather than stepwise mutagenesis as a mechanism for capsule variation. Eight of the nine serotypes appear to be closely related both structurally and genetically, whereas serotype VIII is more distantly related. This similarity in polysaccharide structure strongly suggests that the evolutionary pressure toward antigenic variation exerted by acquired immunity is counterbalanced by a survival advantage conferred by conserved structural motifs of the GBS polysaccharides.


Assuntos
Cápsulas Bacterianas/química , Proteínas de Bactérias/genética , Variação Genética , Streptococcus agalactiae/classificação , Cápsulas Bacterianas/biossíntese , Cápsulas Bacterianas/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Carboidratos , Transferência Genética Horizontal , Dados de Sequência Molecular , Família Multigênica , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Sorotipagem , Infecções Estreptocócicas , Streptococcus agalactiae/genética
7.
J Bacteriol ; 187(3): 1105-13, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659687

RESUMO

Group B Streptococcus (GBS) is frequently carried in the gastrointestinal or genitourinary tract as a commensal organism, yet it has the potential to cause life-threatening infection in newborn infants, pregnant women, and individuals with chronic illness. Regulation of virulence factor expression may affect whether GBS behaves as an asymptomatic colonizer or an invasive pathogen, but little is known about how such factors are controlled in GBS. We now report the characterization of a GBS locus that encodes a two-component regulatory system similar to CsrRS (or CovRS) in Streptococcus pyogenes. Inactivation of csrR, encoding the putative response regulator, in two unrelated wild-type strains of GBS resulted in a marked increase in production of beta-hemolysin/cytolysin and a striking decrease in production of CAMP factor, an unrelated cytolytic toxin. Quantitative RNA hybridization experiments revealed that these two phenotypes were associated with a marked increase and decrease in expression of the corresponding genes, cylE and cfb, respectively. The CsrR mutant strains also displayed increased expression of scpB encoding C5a peptidase. Similar, but less marked, changes in gene expression were observed in CsrS (putative sensor component) mutants, evidence that CsrR and CsrS constitute a functional two-component system. Experimental infection studies in mice demonstrated reduced virulence of both CsrR and CsrS mutant strains relative to the wild type. Together, these results indicate that CsrRS regulates expression of multiple GBS virulence determinants and is likely to play an important role in GBS pathogenesis.


Assuntos
Streptococcus agalactiae/patogenicidade , Virulência/fisiologia , Proteínas de Bactérias/genética , Genes Bacterianos , Humanos , Mutagênese , Plasmídeos/genética , Dobramento de Proteína , Infecções Estreptocócicas , Transcrição Gênica
8.
J Bacteriol ; 186(3): 654-60, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14729690

RESUMO

We designed a selection strategy for the isolation of Escherichia coli mutants exhibiting enhanced protein disulfide isomerase activity. The folding of a variant of tissue plasminogen activator (v-tPA), a protein containing nine disulfide bonds, in the bacterial periplasm is completely dependent on the level of disulfide isomerase activity of the cell. Mutations that increase this activity mediate the formation of catalytically active v-tPA, which in turn cleaves a p-aminobenzoic acid (PABA)-peptide adduct to release free PABA and thus allows the growth of an auxotrophic strain. Following chemical mutagenesis, a total of eight E. coli mutants exhibiting significantly higher disulfide isomerization activity, not only with v-tPA but also with two other unrelated protein substrates, were isolated. This phenotype resulted from significantly increased expression of the bacterial disulfide isomerase DsbC. In seven of the eight mutants, the upregulation of DsbC was found to be related to defects in RNA processing by RNase E, the rne gene product. Specifically, the genetic lesions in five mutants were shown to be allelic to rne, while an additional two mutants exhibited impaired RNase E activity due to lesions in other loci. The importance of mRNA stability on the expression of DsbC is underscored by the short half-life of the dsbC transcript, which was found to be only 0.8 min at 37 degrees C in wild-type cells but was two- to threefold longer in some of the stronger mutants. These results (i) confirm the central role of DsbC in disulfide bond isomerization in the bacterial periplasm and (ii) suggest a critical role for RNase E in regulating DsbC expression.


Assuntos
Dissulfetos/metabolismo , Endorribonucleases/fisiologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Isomerases de Dissulfetos de Proteínas/genética , RNA Mensageiro/metabolismo , Endorribonucleases/genética , Escherichia coli/genética , Isomerismo
9.
Proc Natl Acad Sci U S A ; 100(4): 1966-71, 2003 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-12569171

RESUMO

Streptococcus pneumoniae is one of the leading causes of invasive bacterial disease worldwide. Fragments of the cell wall and the cytolytic toxin pneumolysin have been shown to contribute substantially to inflammatory damage, although the interactions between pneumococcal components and host-cell structures have not been elucidated completely. Results of a previous study indicated that cell-wall components of pneumococci are recognized by Toll-like receptor (TLR)2 but suggested that pneumolysin induces inflammatory events independently of this receptor. In this study we tested the hypothesis that pneumolysin interacts with surface proteins of the TLR family other than TLR2. We found that pneumolysin stimulates tumor necrosis factor-alpha and IL-6 release in wild-type macrophages but not in macrophages from mice with a targeted deletion of the cytoplasmic TLR-adapter molecule myeloid differentiation factor 88, suggesting the involvement of the TLRs in pneumolysin recognition. Purified pneumolysin synergistically activated macrophage responses together with preparations of pneumococcal cell walls or staphylococcal peptidoglycan, which are known to activate TLR2. Furthermore, when compared with wild-type macrophages, macrophages from mice that carry a spontaneous mutation in TLR4 (P712H) were hyporesponsive to both pneumolysin alone and the combination of pneumolysin with pneumococcal cell walls. Finally, these TLR4-mutant mice were significantly more susceptible to lethal infection after intranasal colonization with pneumolysin-positive pneumococci than were control mice. We conclude that the interaction of pneumolysin with TLR4 is critically involved in the innate immune response to pneumococcus.


Assuntos
Proteínas de Drosophila , Glicoproteínas de Membrana/metabolismo , Infecções Pneumocócicas/metabolismo , Receptores de Superfície Celular/metabolismo , Estreptolisinas/metabolismo , Animais , Proteínas de Bactérias , Sequência de Bases , Linhagem Celular , Cricetinae , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Macrófagos Peritoneais/imunologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Mutação , Infecções Pneumocócicas/imunologia , Receptores de Superfície Celular/genética , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Receptores Toll-Like
10.
Proc Natl Acad Sci U S A ; 99(19): 12391-6, 2002 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-12200547

RESUMO

The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V/R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.


Assuntos
Genoma Bacteriano , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Sequência de Aminoácidos , Evolução Biológica , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Sorotipagem , Especificidade da Espécie , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/classificação , Streptococcus pneumoniae/genética , Streptococcus pyogenes/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...