Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pediatr Otorhinolaryngol ; 136: 110196, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32622252

RESUMO

OBJECTIVES: Type III collagen plays significant role in skin wound healing, forming provisional matrix guiding the inflammatory cells and fibroblasts into the wound site. Our preliminary study performed on rat's tympanic membrane (TM) using Rat Wound Healing RT2 Profiler PCR Array revealed up-regulated expression of collagen type III α1 chain mRNA also during healing of TM. This study was undertaken to confirm and evaluate collagen type III protein expression and distribution during TM healing process. METHODS: Sixty rats were used, of which 10 served as controls and the others had their TM perforated. The experimental animals were divided into five subgroups on the basis of time points (03, 06, 09, 14, 20 day after injury). Videootoscopy and histology were employed to assess morphology of the healing process. The expression of collagen type III was evaluated using Western blot analysis and its tissue localization was determined by the immunohistochemical method. RESULTS: The expression of collagen type III remained on the same level as in control TM up to day 06. On day 09 abrupt (p = 0.01) increase of the collagen type III expression was observed and it maintained on the same level to the end of observation period. In perforated TM collagen type III was detected in the healing area along the perforation border and around dilated blood vessels. On day 14 and 20 collagen type III was found in the connective tissue filling up the TM previous defect. CONCLUSIONS: Taking into consideration our recent and previous data, as well as results obtained by other authors, is seems possible that the increase of collagen type III expression in the late stage of TM healing contributes to proper scar formation.


Assuntos
Colágeno Tipo III/metabolismo , Perfuração da Membrana Timpânica/metabolismo , Cicatrização/fisiologia , Animais , Western Blotting , Colágeno Tipo III/genética , Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Perfuração da Membrana Timpânica/etiologia , Perfuração da Membrana Timpânica/patologia
2.
Plant Dis ; 92(9): 1366, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30769428

RESUMO

Little cherry disease (LChD) is a serious viral disease of sweet (Prunus avium) and sour (P. cerasus) cherry trees. Infection of sensitive cultivars results in small, angular, and pointed fruits with reduced sweetness. In late summer, leaves show a characteristic red coloration or bronzing of the surfaces. One Ampelovirus species, Little cherry virus 2 (LChV-2) (2), and one unassigned species in the Closteroviridae, Little cherry virus 1 (LChV-1) (3), have been associated with LChD. Twenty-seven sour and sweet cherry trees of six varieties from orchards located in several regions of Poland were tested for LChV-1 and LChV-2. Leaf samples were taken either from trees showing fruit symptoms or from asymptomatic trees during the summer of the 2006 growing season. RNA was isolated from the leaves with an RNeasy Kit (Qiagen, Hilden, CA), and reverse transcription (RT)-PCR was performed using primer pairs LCV1U/LCV1L and LCV2UP2/LCV2LO2, which are specific for a 419-bp fragment of the LChV-1 3' nontranslated region and a 438-bp fragment of the LChV-2 methyltransferase gene, respectively (1). The primer pair L2CPF (5'-GTTCGAAAGTGTTTCTTGAT-3') and L2CPR (5'-GCAACAGAAAAACATATGACTCA-3') was designed from existing LChV-2 sequences (GenBank Accession Nos. AF416335 and NC_005065) to amplify the entire LChV-2 coat protein (CP) gene (nucleotides 13,007 to 14,134). The amplified cDNA fragments of LChV-2 genome were ligated to the bacterial vector pCR2.1-TOPO (Invitrogen, Carlsbad, CA), which was used to transform Escherichia coli TOP10 competent cells following the manufacturer's protocol. Both strands of three clones for each amplified LChV-2 genome fragment were sequenced with an automated nucleotide sequencer at the Institute of Biochemistry and Biophysics in Warsaw. RT-PCR results showed that 6 of 27 trees were infected, with LChV-1 detected in five sweet cherry trees and LChV-2 singly infecting one sweet cherry tree cv Elton (isolate C4/14). The nucleotide sequence of the 438-bp methyltransferase gene fragment of isolate C4/14 showed 86, 85, and 84% identity to GenBank Accession Nos. AF333237, AF531505, and AJ430056, respectively, all previously reported LChV-2 sequences from cherry trees. Sequence analysis of the 1,088-bp coat protein gene showed 89 to 91% and 92 to 93% nucleotide and amino acid identity, respectively, with the aforementioned three LChV-2 isolates. The tree infected with LChV-2 was indexed by graft transmission to the woody indicator, Prunus avium cv. Canindex, which showed reddening of the leaves characteristic of LChD 3 months after inoculation. Since cherry production in Poland is 230,000 t per year, the disease may have a significant economic impact because the affected fruits are unsuitable either for consumption or sale. To our knowledge, this is the first report of LChV-2 in Poland. References: (1) M. E. Rott and W. Jelkmann. Phytopathology 91:261, 2001. (2) M. E. Rott and W. Jelkmann. Arch. Virol. 150:107, 2005. (3) M. Vitushkina et al. Eur. J. Plant Pathol. 103:803, 1997.

3.
Plant Dis ; 89(12): 1363, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30791330

RESUMO

Cherry green ring mottle virus (CGRMV), a member of the genus Foveavirus, infects several Prunus species including sweet cherry, sour cherry, ornamental cherry, peach, and apricot throughout North America and Europe. On sour cherry, the virus causes leaf yellowing and dark mottle around secondary veins. Sweet cherry trees are symptomless hosts of CGRMV. During the 2004 growing season, 27 sour and sweet cherry trees were tested for the presence of CGRMV. RNA was isolated from leaves using an RNeasy kit (Qiagen GmbH, Hilden, Germany) and then evaluated by reverse transcription-polymerase chain reaction (RT-PCR) amplification. Two primer sets, GRMV7956/GRMV8316 (1) and NCP5/NCP3 (2), were used for amplification of the CGRMV coat protein gene (807 bp) or its fragment (366 bp), respectively. The cDNA fragments were cloned into bacterial vector pCR 2.1-TOPO, sequenced and analyzed using the Lasergene (DNASTAR, Madison, WI) computer program. Nucleotide sequence of the C328 isolate (GenBank Accession No. AY841279) was compared with corresponding regions of published sequences of CGRMV isolates. The nucleotide sequence of this isolate was 98% identical to the Leb isolate (GenBank Accession No. AF533157) from sour cherry. The lowest similarity (80%) was between the CP sequences of isolate C328 and an isolate from apricot (GenBank Accession No. AY172334.1). Results of biological indexing on Prunus serrulata 'Shirofugen' and 'Kwanzan' confirmed the infection of 'Star' sweet cherry with CGRMV. The indicators showed leaf epinasty and necrosis of fragments of midrib or veins characteristic for CGRMV (2). The CGRMV infection of the indicators was confirmed using RT-PCR. References: (1) M. E. Rott and W. Jelkmann. Eur. J. Plant Pathol. 107:411, 2001. (2) Y. Zhang et al. J. Gen. Virol. 79:2275, 1998.

4.
Plant Dis ; 88(8): 909, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30812537

RESUMO

Cherry virus A (CVA), a member of the genus Capillovirus, has been reported in sweet cherry in Germany, Canada, and Great Britain. No data are available on the effects of CVA on fruit quality and yield of infected trees. Little cherry disease (LChD) occurs in most cherry growing areas of the world. Symptoms on sensitive cultivars include discolored fruit that remain small, pointed in shape, and tasteless. Three Closterovirus spp. associated with LChD have been described (Little cherry virus-1 [LChV-1], LChV-2, and LChV-3). Diseased local and commercial cultivars of sour cherry trees were found in a Prunus sp. germplasm collection and orchards in Poland during the 2003 growing season. The foliar symptoms included irregular, chlorotic mottling, distortion, and premature falling of leaves. Some of the diseased trees developed rosette as a result of decreased growth and shortened internodes. Severely infected branches exhibited dieback symptoms. Because the symptoms were suggestive of a possible virus infection, leaf samples were collected from 38 trees and assayed for Prune dwarf virus and Prunus necrotic ringspot virus using double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). RNA extracted from leaves was used in a reverse transcription-polymerase chain reaction (RT-PCR) with the One-Step RT-PCR with Platinum Taq (Invitrogen Life Technologies) and primer sets specific for CVA (1), LChV-1 (3), and LChV-2 (3). The RNA samples were also tested using RT-PCR for detection of Cherry mottle leaf virus (CMLV), Cherry necrotic rusty mottle virus (CNRMV), and Cherry green ring mottle virus (CGRMV) with specific primer sets (2). Amplification of a 397-bp coat protein gene product confirmed infection of 15 trees with CVA. A 419-bp fragment corresponding to the coat protein gene of LChV-1 was amplified from cv. Gisela rootstock and local cv. WVIII/1. To confirm RT-PCR results, CVA amplification products from local cv. WX/5 and LChV-1 from cvs. Gisela and WVIII/1 were cloned in bacterial vector pCR 2.1-TOPO and then sequenced. The sequences were analyzed with the Lasergene (DNASTAR, Madison, WI) computer program. The alignment indicated that the nucleotide sequence of cv. WX/5 was closely related to the published sequences of CVA (Genbank Accession No. NC_003689) and had an 89% homology to the corresponding region. The nucleotide sequence similarity between the 419-bp fragment obtained from cvs. Gisela and WVIII/1 was 87% and 91%, respectively, compared with the reference isolate of LChV-1 (Genbank Accession No. NC_001836). The sampled trees tested negative for LChV-2, CGRMV, CMLV, and CNRMV using RT-PCR. Some trees tested positive for PNRSV and PDV. To our knowledge, this is the first report of CVA and LChV-1 in Poland. References: (1) D. James and W. Jelkmann. Acta Hortic. 472:299, 1998. (2) M. E. Rott and W. Jelkmann. Eur. J. Plant Pathol. 107:411,2001. (3) M. E. Rott and W. Jelkmann. Phytopathology. 91:61, 2001.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...