Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(20): 5517-5528, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38749061

RESUMO

We present ab initio simulations based on subsystem DFT of group 10 aqua ions accurately compared against experimental data on hydration structure. Our simulations provide insights into the molecular structures and dynamics of hydration shells, offering recalibrated interpretations of experimental results. We observe a soft, but distinct second hydration shell in Palladium (Pd) due to a balance between thermal fluctuations, metal-water interactions, and hydrogen bonding. Nickel (Ni) and platinum (Pt) exhibit more rigid hydration shells. Notably, our simulations align with experimental findings for Pd, showing axial hydration marked by a broad peak at about 3 Å in the Pd-O radial distribution function, revising the previously sharp "mesoshell" prediction. We introduce the "hydrogen bond dome" concept to describe a resilient network of hydrogen-bonded water molecules around the metal, which plays a critical role in the axial hydration dynamics.

2.
Trop Med Infect Dis ; 8(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37235311

RESUMO

BACKGROUND: Chagas disease is a potentially fatal disease caused by the parasite Trypanosoma cruzi. There is growing scientific interest in finding new and better therapeutic alternatives for this disease's treatment. METHODS: A total of 81 terpene compounds with potential trypanocidal activity were screened and found to have potential T. cruzi cysteine synthase (TcCS) inhibition using molecular docking, molecular dynamics, ADME and PAIN property analyses and in vitro susceptibility assays. RESULTS: Molecular docking analyses revealed energy ranges from -10.5 to -4.9 kcal/mol in the 81 tested compounds, where pentacyclic triterpenes were the best. Six compounds were selected to assess the stability of the TcCS-ligand complexes, of which lupeol acetate (ACLUPE) and α-amyrin (AMIR) exhibited the highest stability during 200 ns of molecular dynamics analysis. Such stability was primarily due to their hydrophobic interactions with the amino acids located in the enzyme's active site. In addition, ACLUPE and AMIR exhibited lipophilic characteristics, low intestinal absorption and no structural interferences or toxicity. Finally, selective index for ACLUPE was >5.94, with moderate potency in the trypomastigote stage (EC50 = 15.82 ± 3.7 µg/mL). AMIR's selective index was >9.36 and it was moderately potent in the amastigote stage (IC50 = 9.08 ± 23.85 µg/mL). CONCLUSIONS: The present study proposes a rational approach for exploring lupeol acetate and α-amyrin terpene compounds to design new drugs candidates for Chagas disease.

3.
Org Biomol Chem ; 20(20): 4141-4154, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35521783

RESUMO

In this research the sequential generation and cyclization of N-alkoxyaminyl radicals to produce 1-azaspiro[4.4]nonane, a prominent scaffold in organic and medicinal chemistry, was studied. Competition experiments in benzene at 80 °C with brominated oxime ethers using Bu3SnH as chain transfer and AIBN as the initiator generated vinyl or aryl radicals which were captured by oxime ethers, allowing approximate 5-exo-trig cyclization constants at 4.6 × 108 s-1 and 9.9 × 108 s-1 respectively to be established. Similar results were obtained by kinetic studies using the transition state theory (TST) from ab initio calculations with density functional theory (DFT) using the M06-2X, B3LYP, mPW1PW91 and TPSSh functionals in combination with the 6-311+G(d, p) basis set. Additionally, it was found that the 5-exo-trig cyclization of the N-alkoxyaminyl radical onto CC double bonds is a reversible process whose constants were determined to be in the range of 6.2 × 100 s-1 and 3.5 × 106 s-1 at 80 °C, depending on the nature of the substituents. The calculation of the radical stabilization energy (RSE) shows that the N-alkoxyaminyl radical is a very stable species and its reactivity in the addition on alkenes is governed by its nucleophilic character and the stability of the carbon-centered radical formed after cyclization. The reduction constant of the N-alkoxyaminyl radical with Bu3SnH in the gas phase at 80 °C was also estimated to be 3.4 × 100 M-1 s-1 through computational calculations. This information facilitates the rational planning of cascades and other methodologies applied to the construction of carbocyclic and aza-heterocyclic compounds.


Assuntos
Éteres , Modelos Teóricos , Radicais Livres/química , Cinética , Estrutura Molecular , Oximas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...