Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(21): 15080-93, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24727471

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-)-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser(737) in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl(-) secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser(737) mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl(-) channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl(-) channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Endocitose , Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células Cultivadas , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Proteínas de Membrana/genética , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Sistema Respiratório/citologia , Serina/genética , Serina/metabolismo
2.
Commun Integr Biol ; 6(2): e23094, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23750297

RESUMO

CFTR is a PKA activated Cl(-) channel expressed in the apical membrane of fluid transporting epithelia. We previously demonstrated that c-Cbl decreases CFTR stability in the plasma membrane by facilitating its endocytosis and lysosomal degradation in human airway epithelium. The most common mutation associated with cystic fibrosis, deletion of Phe508 (∆F508), leads to a temperature sensitive biosynthetic processing defect in the CFTR protein. Mature ∆F508-CFTR that has been rescued by low temperature or chemical chaperones is partially functional as a Cl(-) channel but has decreased plasma membrane stability due to altered post-maturational trafficking. Our present data demonstrate that c-Cbl controls the post-maturational trafficking of rescued ∆F508-CFTR. Partial depletion of c-Cbl increased stability of the plasma membrane associated mature ∆F508-CFTR and the ∆F508-CFTR mediated Cl(-) secretion. These data indicate that correcting the post-maturational trafficking of ∆F508-CFTR may represent a therapeutic approach complementary to the biosynthetic rescue. Because c-Cbl functions as an adaptor and scaffolding protein during CFTR endocytosis, we propose that interfering with the c-Cbl mediated endocytic recruitment of ∆F508-CFTR may increase stability of ∆508-CFTR in the plasma membrane after its biosynthetic rescue.

3.
PLoS One ; 8(5): e63167, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671668

RESUMO

CFTR is an integral transmembrane glycoprotein and a cAMP-activated Cl(-) channel. Mutations in the CFTR gene lead to Cystic Fibrosis (CF)-an autosomal recessive disease with majority of the morbidity and mortality resulting from airway infection, inflammation, and fibrosis. The most common disease-associated mutation in the CFTR gene-deletion of Phe508 (ΔF508) leads to a biosynthetic processing defect of CFTR. Correction of the defect and delivery of ΔF508-CFTR to the cell surface has been highly anticipated as a disease modifying therapy. Compared to promising results in cultured cell this approach was much less effective in CF patients in an early clinical trial. Although the cause of failure to rescue ΔF508-CFTR in the clinical trial has not been determined, presence of factor(s) that interfere with the rescue in vivo could be considered. The cytokine TGF-ß1 is frequently elevated in CF patients. TGF-ß1 has pleiotropic effects in different disease models and genetic backgrounds and little is known about TGF-ß1 effects on CFTR in human airway epithelial cells. Moreover, there are no published studies examining TGF-ß1 effects on the functional rescue of ΔF508-CFTR. Here we found that TGF-ß1 inhibits CFTR biogenesis by reducing mRNA levels and protein abundance in primary differentiated human bronchial epithelial (HBE) cells from non-CF individuals. TGF-ß1 inhibits CFTR biogenesis without compromising the epithelial phenotype or integrity of HBE cells. TGF-ß1 also inhibits biogenesis and impairs the functional rescue of ΔF508-CFTR in HBE cells from patients homozygous for the ΔF508 mutation. Our data indicate that activation of TGF-ß1 signaling may inhibit CFTR function in non-CF individuals and may interfere with therapies directed at correcting the processing defect of ΔF508-CFTR in CF patients.


Assuntos
Diferenciação Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Western Blotting , Brônquios/citologia , Membrana Celular/metabolismo , Células Cultivadas , Cloretos/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
J Vis Exp ; (82): e50867, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24378656

RESUMO

Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Endocitose/fisiologia , Glutationa/farmacologia , Proteínas de Membrana/metabolismo , Biotina/química , Biotina/metabolismo , Western Blotting , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Densitometria , Endocitose/efeitos dos fármacos , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Transporte Proteico/efeitos dos fármacos , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Estereoisomerismo
5.
J Biol Chem ; 287(18): 15087-99, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22399289

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl(-) channel expressed in the apical plasma membrane of fluid-transporting epithelia, where the plasma membrane abundance of CFTR is in part controlled by clathrin-mediated endocytosis. The protein networks that control CFTR endocytosis in epithelial cells have only been partially explored. The assembly polypeptide-2 complex (AP-2) is the prototypical endocytic adaptor critical for optimal clathrin coat formation. AP-2 is essential for recruitment of cargo proteins bearing the YXXΦ motif. Although AP-2 interacts directly with CFTR in vitro and facilitates CFTR endocytosis in some cell types, it remains unknown whether it is critical for CFTR uptake into clathrin-coated vesicles (CCVs). Disabled-2 (Dab2) is a clathrin-associated sorting protein (CLASP) that contributes to clathrin recruitment, vesicle formation, and cargo selection. In intestinal epithelial cells Dab2 was not found to play a direct role in CFTR endocytosis. By contrast, AP-2 and Dab2 were shown to facilitate CFTR endocytosis in human airway epithelial cells, although the specific mechanism remains unknown. Our data demonstrate that Dab2 mediates AP-2 independent recruitment of CFTR to CCVs in polarized human airway epithelial cells. As a result, it facilitates CFTR endocytosis and reduces CFTR abundance and stability in the plasma membrane. These effects are mediated by the DAB homology domain. Moreover, we show that in human airway epithelial cells AP-2 is not essential for CFTR recruitment to CCVs.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Polaridade Celular/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Vesículas Transportadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Proteínas Reguladoras de Apoptose , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Clatrina/genética , Clatrina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Endocitose/fisiologia , Células Epiteliais/citologia , Humanos , Estabilidade Proteica , Estrutura Terciária de Proteína , Mucosa Respiratória/citologia , Vesículas Transportadoras/genética , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...