Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079264

RESUMO

Historical buildings and monuments are largely made of brickwork. These buildings form the historical and artistic character of cities, and how we look after them is a reflection of our society. When assessing ceramic products, great emphasis is placed on their mechanical properties, whilst their durability is often neglected. However, the durability or resistance to weathering of masonry elements is just as important as their mechanical properties. Therefore, this work deals with predicting the durability of solid-fired bricks before they are used when reconstructing monuments and historical buildings. Durability prediction is assessed by identifying defects in the material's internal structure. These faults may not be visible on the element's surface and are difficult to detect. For this purpose, non-destructive electroacoustic methods, such as the resonant pulse method or the ultrasonic pulse method, were used. Based on an analysis of the initial and residual mechanical properties after freezing cycles, four durability classes of solid-fired bricks were determined. This work aimed to find a way to predict the durability (lifetime) of an anonymous solid-fired brick, expressed in terms of the number of freeze cycles the brick would last, based on non-destructive measurements.

2.
Materials (Basel) ; 12(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450816

RESUMO

During the construction of concrete structures, it is often useful to know compressive strength at an early age. This is an amount of strength required for the safe removal of formwork, also known as stripping strength. It is certainly helpful to determine this strength non-destructively, i.e., without any invasive steps that would damage the structure. Second only to the ultrasonic pulse velocity test, the rebound hammer test is the most common NDT method currently used for this purpose. However, estimating compressive strength using general regression models can often yield inaccurate results. The experiment results show that the compressive strength of any concrete can be estimated using one's own newly created regression model. A traditionally constructed regression model can predict the strength value with 50% reliability, or when two-sided confidence bands are used, with 95% reliability. However, civil engineers usually work with the so-called characteristic value defined as a 5% quantile. Therefore, it appears suitable to adjust conventional methods in order to achieve a regression model with 95% one-sided reliability. This paper describes a simple construction of such a characteristic curve. The results show that the characteristic curve created for the concrete in question could be a useful tool even outside of practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...