Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447882

RESUMO

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Assuntos
Aurora Quinase A , Proteínas de Ciclo Celular , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Supressora de Tumor p53/genética , Segregação de Cromossomos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Instabilidade Genômica , Instabilidade Cromossômica/genética , Cromossomos/metabolismo
2.
Genes (Basel) ; 12(9)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34573304

RESUMO

The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore-microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore-microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial-mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells.


Assuntos
Transcriptoma
3.
Genes (Basel) ; 11(7)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698529

RESUMO

P14ARF is a tumor suppressor encoded by the CDKN2a locus that is frequently inactivated in human tumors. P14ARF protein quenches oncogene stimuli by inhibiting cell cycle progression and inducing apoptosis. P14ARF functions can be played through interactions with several proteins. However, the majority of its activities are notoriously mediated by the p53 protein. Interestingly, recent studies suggest a new role of p14ARF in the maintenance of chromosome stability. Here, we deepened this new facet of p14ARF which we believe is relevant to its tumor suppressive role in the cell. To this aim, we generated a monoclonal HCT116 cell line expressing the p14ARF cDNA cloned in the piggyback vector and then induced aneuploidy by treating HCT116 cells with the CENP-E inhibitor GSK923295. P14ARF ectopic re-expression restored the near-diploid phenotype of HCT116 cells, confirming that p14ARF counteracts aneuploid cell generation/proliferation.


Assuntos
Proteína Supressora de Tumor p14ARF/genética , Aneuploidia , Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade , Proliferação de Células , Células HCT116 , Humanos , Fenótipo , Sarcosina/análogos & derivados , Sarcosina/toxicidade , Proteína Supressora de Tumor p14ARF/metabolismo
4.
Genomics ; 112(3): 2541-2549, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32057913

RESUMO

Chromosome segregation defects lead to aneuploidy which is a major feature of solid tumors. How diploid cells face chromosome mis-segregation and how aneuploidy is tolerated in tumor cells are not completely defined yet. Thus, an important goal of cancer genetics is to identify gene networks that underlie aneuploidy and are involved in its tolerance. To this aim, we induced aneuploidy in IMR90 human primary cells by depleting pRB, DNMT1 and MAD2 and analyzed their gene expression profiles by microarray analysis. Bioinformatic analysis revealed a common gene expression profile of IMR90 cells that became aneuploid. Gene Set Enrichment Analysis (GSEA) also revealed gene-sets/pathways that are shared by aneuploid IMR90 cells that may be exploited for novel therapeutic approaches in cancer. Furthermore, Protein-Protein Interaction (PPI) network analysis identified TOP2A and KIF4A as hub genes that may be important for aneuploidy establishment.


Assuntos
Aneuploidia , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação da Expressão Gênica , Proteínas Mad2/genética , Proteína do Retinoblastoma/genética , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Proteínas Mad2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento de Interação de Proteínas , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Proteína do Retinoblastoma/metabolismo , Transcriptoma
5.
Mol Genet Genomics ; 294(1): 149-158, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30264192

RESUMO

The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures the fidelity of chromosomes segregation. Reduced expression of some of its components weakens the SAC and induces chromosome instability and aneuploidy, which are both well-known hallmarks of cancer cells. Centromere protein-E (CENP-E) is a crucial component of the SAC and its function is to facilitate kinetochore microtubule attachment required to achieve and maintain chromosome alignment. The present study investigates the possible role of p14ARF as a controller of aneuploid cells proliferation. We used RNA interference to induce aneuploidy by partial depletion of CENP-E in human primary fibroblasts (IMR90) and in near diploid tumor cells (HCT116). In contrast to IMR90 aneuploid cell number, which was drastically reduced and leaned towards the WT condition, HCT116 aneuploid cell numbers were slightly decreased at later time points. This euploidy restoration was accompanied by increased p14ARF expression in IMR90 cells and followed ectopic p14ARF re-expression in p14ARF-null HCT116 cells. Collectively, our results suggest that hampering proliferation of aneuploid cells could be an additional role of the p14ARF tumor suppressor.


Assuntos
Aneuploidia , Proteínas Cromossômicas não Histona/genética , Fibroblastos/citologia , Proteínas Oncogênicas/genética , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Proteínas Cromossômicas não Histona/metabolismo , Genes Supressores de Tumor , Células HCT116 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Oncogênicas/metabolismo , RNA Interferente Pequeno
6.
Oncotarget ; 7(4): 3726-39, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26771138

RESUMO

Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation.Here, we report that the DNA hypomethylating drug 5-aza-2'-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduction of 5-Methyl Cytosine at the pericentromeric region of chromosomes correlates with aneuploidy and mitotic defects.Our results suggest that DNA hypomethylation leads to aneuploidy by altering the DNA methylation landscape at the centromere that is necessary to ensure proper chromosomes segregation by recruiting the proteins necessary to build up a functional kinetochore.


Assuntos
Aneuploidia , Azacitidina/análogos & derivados , Aberrações Cromossômicas/induzido quimicamente , Neoplasias do Colo/genética , Metilação de DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mitose/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Azacitidina/farmacologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Análise Citogenética , Decitabina , Humanos , Microscopia de Fluorescência , Ploidias , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...