Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37374971

RESUMO

This paper focuses on a process for dairy wastewater treatment by mixotrophic cultivation of microalgae Nannochloris sp., using cheese whey obtained as a side flow from cheese production as an organic carbon source. The microalgae samples were prepared by adding to the standard growth medium increasing amounts of cheese whey, calculated to ensure a lactose concentration between 0 and 10 g/L. The samples were incubated at a constant temperature of 28 °C and 175 rpm stirring speed for a total time of seven days. Two LED (Light Emitting Diode) illumination schemes were applied in order to assess the effect of this parameter on microalgae development and bioactive compound accumulation: continuous illumination (light stress) versus alternative cycles of 12 h light-12 h dark (day-night cycle). The growth medium was analyzed before and after microalgae cultivation in order to determine the reduction of carbon, nitrogen, and phosphorus. The results obtained for this process, after a seven-day cultivation period, were as follows: reduction of 99-100% of lactose from the growth medium, up to 96% reduction in chemical oxygen demand, up to 91% reduction in nitrogen content, and up to 70% reduction in phosphorus content.

2.
Life (Basel) ; 13(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36836770

RESUMO

The influence of ultrasound irradiation on the algal biomass productivity as well as its oil content and fatty acids profile, grown in a modified Zarrouk medium, i.e., deproteinized whey waste solution, was investigated. The algal samples (Nannochloris sp. 424-1 microalgae) were grown for 7 days in a thermostated incubator at 28 °C, shaken under continuous light. During this period, the algal biomass was subjected to induced stress by ultrasonic irradiation at different powers and sonication time. The obtained results demonstrate that ultrasound stressing of algae biomass has a positive effect on both the quantity of biomass and the oil obtained, also causing a shift in fatty acid composition by increasing the proportion of C16 and C18 polyunsaturated fatty acids. A low dosage level of exposure to the ultrasound led to algal biomass increase as well as lipid accumulation. For both types of irradiation modes which were investigated, daily and only initial irradiation, the beneficial effect of the ultrasound decreases as the exposure time increases and the excessive sonication becomes detrimental to microalgae growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...