Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 7: 1188, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536280

RESUMO

Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including methane. This study evaluates the carboxydotrophic (CO-consuming) methanogenic potential present in an anaerobic sludge from an upflow anaerobic sludge bed (UASB) reactor treating waste water, and elucidates the CO conversion routes to methane at 35 ± 3°C. Kinetic activity tests under CO at partial pressures (pCO) varying from 0.1 to 1.5 atm (0.09-1.31 mmol/L in the liquid phase) showed a significant carboxydotrophic activity potential for growing conditions on CO alone. A maximum methanogenic activity of 1 mmol CH4 per g of volatile suspended solid and per day was achieved at 0.2 atm of CO (0.17 mmol/L), and then the rate decreased with the amount of CO supplied. The intermediary metabolites such as acetate, H2, and propionate started to accumulate at higher CO concentrations. Inhibition experiments with 2-bromoethanesulfonic acid (BES), fluoroacetate, and vancomycin showed that in a mixed culture CO was converted mainly to acetate by acetogenic bacteria, which was further transformed to methane by acetoclastic methanogens, while direct methanogenic CO conversion was negligible. Methanogenesis was totally blocked at high pCO in the bottles (≥1 atm). However it was possible to achieve higher methanogenic potential under a 100% CO atmosphere after acclimation of the sludge to CO. This adaptation to high CO concentrations led to a shift in the archaeal population, then dominated by hydrogen-utilizing methanogens, which were able to take over acetoclastic methanogens, while syntrophic acetate oxidizing (SAO) bacteria oxidized acetate into CO2 and H2. The disaggregation of the granular sludge showed a negative impact on their methanogenic activity, confirming that the acetoclastic methanogens were the most sensitive to CO, and a contrario, the advantage of using granular sludge for further development toward large-scale methane production from CO-rich syngas.

2.
Can J Microbiol ; 60(6): 407-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24896194

RESUMO

Specific inhibitors such as 2-bromoethanesulfonate (BES) and vancomycin were employed in activity batch tests to decipher metabolic pathways that are preferentially used by a mixed anaerobic consortium (sludge from an anaerobic digester) to transform carbon monoxide (CO) into methane (CH4). We first evaluated the inhibitory effect of both BES and vancomycin on the microbial community, as well as the efficiency and stability of vancomycin at 35 °C, over time. The activity tests with CO2-H2, CO, glucose, acetate, formate, propionate, butyrate, methanol, and ethanol showed that vancomycin does not inhibit some Gram-negative bacteria, and 50 mmol/L BES effectively blocks CH4 production in the sludge. However, when sludge was incubated with propionate, butyrate, methanol, or ethanol as the sole energy and carbon source, methanogenesis was only partially inhibited by BES. Separate tests showed that 0.07 mmol/L vancomycin is enough to maintain its inhibitory efficiency and stability in the population for at least 32 days at 35 °C. Using the inhibitors above, it was demonstrated that CO conversion to CH4 is an indirect, 2-step process, in which the CO is converted first to acetate and subsequently to CH4.


Assuntos
Ácidos Alcanossulfônicos/farmacologia , Antibacterianos/farmacologia , Bactérias Anaeróbias/metabolismo , Monóxido de Carbono/metabolismo , Metano/metabolismo , Vancomicina/farmacologia , Acetatos/metabolismo , Archaea/efeitos dos fármacos , Archaea/metabolismo , Bactérias Anaeróbias/efeitos dos fármacos , Bactérias Anaeróbias/genética , Dióxido de Carbono/metabolismo , Formiatos/metabolismo , Glucose/metabolismo , Propionatos/metabolismo , Esgotos/microbiologia , Resistência a Vancomicina/genética
3.
AMB Express ; 3(1): 60, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24099169

RESUMO

Carboxydothermus hydrogenoformans is a thermophilic anaerobic strain most widely known for its ability to produce hydrogen (H2) when grown on carbon monoxide (CO). Although relatively well studied, growth characterization on pyruvate has never been assessed. The present work fully characterizes growth of the bacterium on pyruvate as a sole carbon source. C. hydrogenoformans demonstrated a growth rate of 0.03 h-1, with pyruvate consumption ranging between 0.21 and 0.48 mol · g-1 volatile suspended solid · d-1. A lag phase was also observed when switching from pyruvate to CO. When grown simultaneously on pyruvate and CO, pyruvate consumption was initiated upon CO depletion. This was attributed to pyruvate oxidation inhibition by CO, and not to a diauxic phenomenom. The strain also showed homoacetogenic activity.

4.
Appl Microbiol Biotechnol ; 91(6): 1677-84, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21822902

RESUMO

The objective of this study was to improve the biological water-gas shift reaction for producing hydrogen (H(2)) by conversion of carbon monoxide (CO) using an anaerobic thermophilic pure strain, Carboxydothermus hydrogenoformans. Specific hydrogen production rates and yields were investigated at initial biomass densities varying from 5 to 20 mg volatile suspended solid (VSS) L(-1). Results showed that the gas-liquid mass transfer limits the CO conversion rate at high biomass concentrations. At 100-rpm agitation and at CO partial pressure of 1 atm, the optimal substrate/biomass ratio must exceed 5 mol CO g(-1) biomass VSS in order to avoid gas-liquid substrate transfer limitation. An average H(2) yield of 94 ± 3% and a specific hydrogen production rate of ca. 3 mol g(-1) VSS day(-1) were obtained at initial biomass densities between 5 and 8 mg VSS(-1). In addition, CO bioconversion kinetics was assessed at CO partial pressure from 0.16 to 2 atm, corresponding to a dissolved CO concentration at 70°C from 0.09 to 1.1 mM. Specific bioactivity was maximal at 3.5 mol CO g(-1) VSS day(-1) for a dissolved CO concentration of 0.55 mM in the culture. This optimal concentration is higher than with most other hydrogenogenic carboxydotrophic species.


Assuntos
Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Hidrogênio/metabolismo , Bactérias/química , Biomassa , Biotransformação , Monóxido de Carbono/química , Hidrogênio/química , Cinética
5.
Environ Sci Technol ; 45(5): 2006-12, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21291242

RESUMO

Gasification of biomass produces a mixture of gas (mainly carbon monoxide (CO), carbon dioxide (CO(2)), and hydrogen (H(2))) called synthesis gas, or syngas, by thermal degradation without combustion. Syngas can be used for heat or electricity production by thermochemical processes. This project aims at developing an alternative way to bioupgrade syngas into biogas (mainly methane), via anaerobic fermentation. Nonacclimated industrial granular sludge to be used as reactor inoculum was initially evaluated for mesophilic carboxydotrophic methanogenesis potential in batch tests at 4 and 8 mmol CO/g VSS.d, in the absence and presence of H(2) and CO(2), respectively. Granular sludge was then introduced into a 30 L gas-lift reactor and supplied with CO, to study the production of methane and other metabolites, at different gas dilutions as well as feeding and recirculation rates. A maximal CO conversion efficiency of 75%, which was gas-liquid mass transfer limited, occurred at a CO partial pressure of 0.6 atm combined with a gas recirculation ratio of 20:1. The anaerobic granule potential for methanogenesis from CO was likely hydrogenotrophic, combined with CO-dependent H(2) formation, either under mesophilic or thermophilic conditions. Thermophilic conditions provide the anaerobic granules with a CO-bioconversion potential significantly larger (5-fold) than under mesophilic conditions, so long as the gas-liquid transfer is alleviated.


Assuntos
Metano/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Anaerobiose , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Monóxido de Carbono/metabolismo , Fermentação , Gases/metabolismo , Calefação , Esgotos/microbiologia , Volatilização
6.
Environ Sci Technol ; 42(8): 3011-7, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18497159

RESUMO

Coupling of methanogenic and methanotrophic catabolisms was performed in a single-stage technology equipped with a water electrolysis cell placed in the effluent recirculation loop. The electrolysis-generated hydrogen served as an electron donor for both bicarbonate reduction into CH4 and reductive dechlorination, while the O2 and CH4, supported the cometabolic oxidation of chlorinated intermediates left over by the tetrachloroethylene (PCE) transformation. The electrolytical methanogenic/methanotrophic coupled (eMaMoC) process was tested in a laboratory-scale setup at PCE loads ranging from 5 to 50 micromol/L(rx) x d (inlet concentrations from 4 to 11 mg/L), and at various hydraulic residence times (HRT). Degradation followed essentially a reductive dechlorination pathway from PCE to cis-1,2-dichloroethene (DCE), and an oxidative pathway from DCE to CO2. PCE reductive dechlorination to DCE was consistently over 98% while a maximum oxidative DCE mineralization of 89% was obtained at a load of 4.3 micromol PCE/ L(rx) x d and an HRT of 6 days. Controlling dissolved oxygen concentrations within a relatively low range (2-3 mg/L) seemed instrumental to sustain the overall degradation capacity. Degradation kinetics were further evaluated: the apparent half-saturation constant (K(s)) had to be set relatively high (29 microM) for the simulated data to best fit the experimental ones. In spite of such kinetic limitations, the eMaMoC system, while fueled by water electrolysis, was effective in building and sustaining a functional methanogenic/methanotrophic consortium capable of significant PCE mineralization in a single-stage process. Hence, degradation standards are within reach so long as the methanotrophic DCE-oxidizing potential, including substrate affinity, are optimized and HRT accordingly adjusted.


Assuntos
Reatores Biológicos , Metano/metabolismo , Tetracloroetileno/metabolismo , Anaerobiose , Biodegradação Ambiental , Eletrólise , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...