Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 172: 60-70, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714011

RESUMO

This study provides a meta-analysis on the relationships between cattle barn CH4, NH3 and N2O emission rates and their key drivers (i.e., housing type, floor type, environmental conditions). Understanding these relationships is essential to reduce uncertainties in emission inventories and suggest targeted mitigation measures. The total number of daily emission rates included in the analysis was 139 for CH4, 293 for NH3 and 100 for N2O emissions. Emission rates in the database showed a large variation with 45-803.5 g/LU d-1 for CH4, 0.036-146.7 gN LU-1 d-1 for NH3, and 0.002-18 gN LU-1 d-1 for N2O emissions. Despite the high emission variability, significant effects were identified·NH3 showed positive correlation with air temperature; NH3 emissions differed between housing types but not between floor types·NH3 emissions from tied stalls were lower than the ones from cubicle housing regardless of the floor type. Additionally, NH3 emissions from loose housings were lower than the ones from cubicle housing·NH3 and N2O emission rates from temperate wet zones were lower than the ones from temperate dry zones. CH4 emission rates were affected by environmental factors only and not by housing and floor type, showing negative correlation with air temperature and humidity. The factors investigated can be suggested as ancillary variables and descriptors when cattle barn emissions are measured, in order to make best use of emission data. Country-specific data of these key drivers can be included into national inventories to adapt them to different agroecosystems and support targeted policies.


Assuntos
Gases de Efeito Estufa , Bovinos , Animais , Gases de Efeito Estufa/análise , Amônia/análise , Abrigo para Animais , Esterco/análise , Óxido Nitroso/análise , Metano/análise
2.
J Environ Qual ; 52(1): 207-223, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36419334

RESUMO

Livestock manure management systems can be significant sources of nitrous oxide (N2 O), methane (CH4 ), and ammonia (NH3 ) emissions. Many studies have been conducted to improve our understanding of the emission processes and to identify influential variables in order to develop mitigation techniques adapted to each manure management step (animal housing, outdoor storage, and manure spreading to land). The international project DATAMAN (http://www.dataman.co.nz) aims to develop a global database on greenhouse gases (N2 O, CH4 ) and NH3 emissions from the manure management chain to refine emission factors (EFs) for national greenhouse gas and NH3 inventories. This paper describes the housing and outdoor storage components of this database. Relevant information for different animal categories, manure types, livestock buildings, outdoor storage, and climatic conditions was collated from published peer reviewed research, conference papers, and existing databases published between 1995 and 2021. In the housing database, 2024 EFs were collated (63% for NH3 , 19.5% for CH4 , and 17.5% for N2 O). The storage database contains 654 NH3 EFs from 16 countries, 243 CH4 EFs from 13 countries, and 421 N2 O EFs from 17 countries. Across all gases, dairy cattle and swine production in temperate climate zones are the most represented animal and climate categories. As for the housing database, the number of EFs for the tropical climate zone is under-represented. The DATAMAN database can be used for the refinement of national inventories and better assessment of the cost-effectiveness of a range of mitigation strategies.


Assuntos
Amônia , Gases de Efeito Estufa , Bovinos , Animais , Suínos , Amônia/análise , Esterco , Óxido Nitroso/análise , Gado , Metano/análise , Abrigo para Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...