Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1362775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487528

RESUMO

Background: The benefits of recombinant interleukin-12 (rIL-12) as a multifunctional cytokine and potential immunotherapy for cancer have been sought for decades based on its efficacy in multiple mouse models. Unexpected toxicity in the first phase 2 study required careful attention to revised dosing strategies. Despite some signs of efficacy since then, most rIL-12 clinical trials have encountered hurdles such as short terminal elimination half-life (T½), limited tumor microenvironment targeting, and substantial systemic toxicity. We developed a strategy to extend the rIL-12 T½ that depends on binding albumin in vivo to target tumor tissue, using single-chain rIL-12 linked to a fully human albumin binding (FHAB) domain (SON-1010). After initiating a dose-escalation trial in patients with cancer (SB101), a randomized, double-blind, placebo-controlled, single-ascending dose (SAD) phase 1 trial in healthy volunteers (SB102) was conducted. Methods: SB102 (NCT05408572) focused on safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) endpoints. SON-1010 at 50-300 ng/kg or placebo administered subcutaneously on day 1 was studied at a ratio of 6:2, starting with two sentinels; participants were followed through day 29. Safety was reviewed after day 22, before enrolling the next cohort. A non-compartmental analysis of PK was performed and correlations with the PD results were explored, along with a comparison of the SON-1010 PK profile in SB101. Results: Participants receiving SON-1010 at 100 ng/kg or higher tolerated the injection but generally experienced more treatment-emergent adverse effects (TEAEs) than those receiving the lowest dose. All TEAEs were transient and no other dose relationship was noted. As expected with rIL-12, initial decreases in neutrophils and lymphocytes returned to baseline by days 9-11. PK analysis showed two-compartment elimination in SB102 with mean T½ of 104 h, compared with one-compartment elimination in SB101, which correlated with prolonged but controlled and dose-related increases in interferon-gamma (IFNγ). There was no evidence of cytokine release syndrome based on minimal participant symptoms and responses observed with other cytokines. Conclusion: SON-1010, a novel presentation for rIL-12, was safe and well-tolerated in healthy volunteers up to 300 ng/kg. Its extended half-life leads to a prolonged but controlled IFNγ response, which may be important for tumor control in patients. Clinical trial registration: https://clinicaltrials.gov/study/NCT05408572, identifier NCT05408572.


Assuntos
Interleucina-12 , Neoplasias , Animais , Camundongos , Humanos , Citocinas , Voluntários Saudáveis , Neoplasias/tratamento farmacológico , Interferon gama , Interleucina-2 , Proteínas Recombinantes , Albuminas/efeitos adversos , Microambiente Tumoral
2.
Front Immunol ; 14: 1326927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250068

RESUMO

Background: The potential synergy between interleukin-12 (IL-12) and IL-15 holds promise for more effective solid tumor immunotherapy. Nevertheless, previous clinical trials involving therapeutic cytokines have encountered obstacles such as short pharmacokinetics, limited tumor microenvironment (TME) targeting, and substantial systemic toxicity. Methods: To address these challenges, we fused single-chain human IL-12 and native human IL-15 in cis onto a fully human albumin binding (FHAB) domain single-chain antibody fragment (scFv). This novel fusion protein, IL12-FHAB-IL15 (SON-1210), is anticipated to amplify the therapeutic impact of interleukins and combination immunotherapies in human TME. The molecule was studied in vitro and in animal models to assess its pharmacokinetics, potency, functional characteristics, safety, immune response, and efficacy. Results: SON-1210 demonstrated robust binding affinity to albumin and exhibited the anticipated in vitro activity and tumor model efficacy that might be expected based on decades of research on native IL-12 and IL-15. Notably, in the B16F10 melanoma model (a non-immunogenic, relatively "cold" tumor), the murine counterpart of the construct, which had mouse (m) and human (h) cytokine sequences for the respective payloads (mIL12-FHAB-hIL15), outperformed equimolar doses of the co-administered native cytokines in a dose-dependent manner. A single dose caused a marked reduction in tumor growth that was concomitant with increased IFNγ levels; increased Th1, CTL, and activated NK cells; a shift in macrophages from the M2 to M1 phenotype; and a reduction in Treg cells. In addition, a repeat-dose non-human primate (NHP) toxicology study displayed excellent tolerability up to 62.5 µg/kg of SON-1210 administered three times, which was accompanied by the anticipated increases in IFNγ levels. Toxicokinetic analyses showed sustained serum levels of SON-1210, using a sandwich ELISA with anti-IL-15 for capture and biotinylated anti-IL-12 for detection, along with sustained IFNγ levels, indicating prolonged kinetics and biological activity. Conclusion: Collectively, these findings support the suitability of SON-1210 for patient trials in terms of activity, efficacy, and safety, offering a promising opportunity for solid tumor immunotherapy. Linking cytokine payloads to a fully human albumin binding domain provides an indirect opportunity to target the TME using potent cytokines in cis that can redirect the immune response and control tumor growth.


Assuntos
Interleucina-12 , Melanoma , Humanos , Animais , Camundongos , Citocinas , Interleucina-15 , Meia-Vida , Albumina Sérica Humana , Microambiente Tumoral
3.
Protein Expr Purif ; 148: 30-39, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29596991

RESUMO

IL15, a member of the common γ chain receptor (γc) cytokine family, is gaining attention in recent years as one of the most promising anti-tumor agents. IL15 regulates T cell activation and proliferation, promotes the survival of CD8+ CD44hi memory T cells and is also essential for NK cell expansion and development. Despite the attraction of developing IL15 as an anti-cancer agent, production of recombinant IL15 has proven to be difficult due to the stringent control of IL15 expression at the transcriptional, translational and the post-translational levels. Furthermore, the bioactivity of IL15 fused to an extra functional domain that is isolated from mammalian cells is generally inferior to recombinant IL15 produced by E. coli. In this study, we report that Lysine 86 in IL15 is responsible for the instability in mammalian cells when its C-terminus is fused to the albumin binding scFv (IL15-A10m3). We demonstrate that K86A or K86R mutants increased the expression of the fusion protein from HEK293 cells. When the wild type IL15 is used for the fusion, no recombinant IL15 fusion was detected in the culture media. Additionally, we determined that the residue 112 in IL15 is critical for the bioactivity of IL15-A10m3. Examination of single and double mutants provides a better understanding of how IL15 engages with its receptor complex to achieve full signaling capacity. The results of our experiments were successfully applied to scale up production to levels up to 50 mg/L and >10 mg/L of >95% pure monomeric recombinant fusion proteins after a 2-step purification from culture media. More importantly, the recombinant fusion protein produced is fully active in stimulating T cell proliferation, when compared to the recombinant wild type IL15.


Assuntos
Interleucina-15/genética , Interleucina-15/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/genética , Escherichia coli/genética , Células HEK293 , Humanos , Receptores de Hialuronatos/genética , Interleucina-15/biossíntese , Células Matadoras Naturais/química , Células Matadoras Naturais/imunologia , Proteínas Recombinantes de Fusão/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...