Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279266

RESUMO

Composites of magnetite (Fe3O4) nanoparticles dispersed in a polydimethylsiloxane (PDMS) matrix were prepared by a molding process. Two types of samples were obtained by free polymerization with randomly dispersed particles and by polymerization in an applied magnetic field. The magnetite nanoparticles were obtained from magnetic micrograins of acicular goethite (α-FeOOH) and spherical hematite (α-Fe2O3), as demonstrated by XRD measurements. The evaluation of morphological and compositional properties of the PDMS:Fe3O4 composites, performed by SEM and EDX, showed that the magnetic particles were uniformly distributed in the polymer matrix. Addition of magnetic dispersions promotes an increase of thermal conductivity compared with pristine PDMS, while further orienting the powders in a magnetic field during the polymerization process induces a decrease of the thermal conductivity compared with the un-oriented samples. The shape of the magnetic dispersions is an important factor, acicular dispersions providing a higher value for thermal conductivity compared with classic commercial powders with almost spherical shapes.

2.
Materials (Basel) ; 14(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562686

RESUMO

In this work, new films containing composite materials based on blends of thermoplastic polymers of the polyurethane (TPU) and polyolefin (TPO) type, in the absence and presence of BaTiO3 nanoparticles (NPs) with the size smaller 100 nm, were prepared. The vibrational properties of the free films depending on the weight ratio of the two thermoplastic polymers were studied. Our results demonstrate that these films are optically active, with strong, broad, and adjustable photoluminescence by varying the amount of TPU. The crystalline structure of BaTiO3 and the influence of thermoplastic polymers on the crystallization process of these inorganic NPs were determined by X-ray diffraction (XRD) studies. The vibrational changes induced in the thermoplastic polymer's matrix of the BaTiO3 NPs were showcased by Raman scattering and FTIR spectroscopy. The incorporation of BaTiO3 NPs in the matrix of thermoplastic elastomers revealed the shift dependence of the photoluminescence (PL) band depending on the BaTiO3 NP concentration, which was capable of covering a wide visible spectral range. The dependencies of the dielectric relaxation phenomena with the weight of BaTiO3 NPs in thermoplastic polymers blends were also demonstrated.

3.
Prog Brain Res ; 119: 351-64, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-10074799

RESUMO

Vasopressin (VP) is one of the principal transmitters in the suprachiasmatic nucleus (SCN). Approximately 20% of neurones in the dorsomedial division of the SCN synthesize the peptide and a high proportion of SCN neurones (> 40%) are excited by VP acting through the V1 receptor. This suggests that VP may act as a feedback regulator of electrical activity within the nucleus. Such an intrinsic excitatory signal can be demonstrated by perifusion with a V1 antagonist which reduces spontaneous neural activity. As the synthesis and release of VP occurs in a circadian manner, this leads to a variable feedback excitation which may contribute to the circadian pattern of activity of the neural clock. This role in amplifying rhythmicity is supported by observations that animals deficient in VP show a reduced circadian amplitude of behavioural rhythms (e.g. locomotor and cortical electroencephalographic rhythms). VP expression declines during ageing and although aged animals show no change in the proportion of SCN neurones excited by VP, the rhythm of spontaneous electrical activity shows a progressive decline, consistent with the reduced endogenous excitatory feedback. However, the homozygous Brattleboro rat which lacks any VP expression still maintains rhythms of electrical activity, indicating that VP is not the sole factor generating circadian activity. The generation of this rhythmicity may depend upon the interaction of VP with other transmitter systems, such as the inhibitory transmitters somatostatin and GABA which show a circadian variation in efficacy. In addition to its role in feedback amplification of the endogenous rhythm of electrical activity, VP also functions as part of the efferent signal to the rest of the CNS where it potentially regulates a number of behavioural and physiological rhythms, including the circadian activity of the hypothalamo-pituitary-adrenal axis. Thus, the combined amplification and signalling functions makes VP an important component of the neuronal clock function in mammals.


Assuntos
Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Transmissão Sináptica/fisiologia , Vasopressinas/metabolismo , Animais , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA