Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Microb Cell Fact ; 23(1): 130, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711033

RESUMO

BACKGROUND: Cyclic ß-1,2-glucans (CßG) are bacterial cyclic homopolysaccharides with interesting biotechnological applications. These ring-shaped molecules have a hydrophilic surface that confers high solubility and a hydrophobic cavity able to include poorly soluble molecules. Several studies demonstrate that CßG and many derivatives can be applied in drug solubilization and stabilization, enantiomer separation, catalysis, synthesis of nanomaterials and even as immunomodulators, suggesting these molecules have great potential for their industrial and commercial exploitation. Nowadays, there is no method to produce CßG by chemical synthesis and bacteria that synthesize them are slow-growing or even pathogenic, which makes the scaling up of the process difficult and expensive. Therefore, scalable production and purification methods are needed to afford the demand and expand the repertoire of applications of CßG. RESULTS: We present the production of CßG in specially designed E. coli strains by means of the deletion of intrinsic polysaccharide biosynthetic genes and the heterologous expression of enzymes involved in CßG synthesis, transport and succinilation. These strains produce different types of CßG: unsubstituted CßG, anionic CßG and CßG of high size. Unsubstituted CßG with a degree of polymerization of 17 to 24 glucoses were produced and secreted to the culture medium by one of the strains. Through high cell density culture (HCDC) of that strain we were able to produce 4,5 g of pure unsubstituted CßG /L in culture medium within 48 h culture. CONCLUSIONS: We have developed a new recombinant bacterial system for the synthesis of cyclic ß-1,2-glucans, expanding the use of bacteria as a platform for the production of new polysaccharides with biotechnological applications. This new approach allowed us to produce CßG in E. coli with high yields and the highest volumetric productivity reported to date. We expect this new highly scalable system facilitates CßG availability for further research and the widespread use of these promising molecules across many application fields.


Assuntos
Escherichia coli , beta-Glucanas , Escherichia coli/metabolismo , Escherichia coli/genética , beta-Glucanas/metabolismo
2.
J Appl Microbiol ; 132(6): 4277-4288, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35357068

RESUMO

AIMS: Bovine brucellosis is a worldwide zoonotic disease that causes important economic losses and public health concerns. Because control of the disease depends on vaccination, serodiagnosis and isolation of the infected animals, affordable, rapid and accurate point of care (POC) tests are needed. METHODS AND RESULTS: We developed and evaluated a novel glycoprotein-based immunochromatographic test for the detection of IgG antibodies against the O-polysaccharide of Brucella in bovine serum samples. Brucella GlycoStrip combines the power of immunochromatographic and bacterial glycoengineering technologies for the diagnosis of bovine brucellosis. The analysis of positive and negative reference samples indicated that the test has a diagnostic sensitivity and specificity of 96.9% (95% CI: 92.7%-100.0%) and 100%, respectively. CONCLUSIONS: Due to the recombinant glycoprotein-based antigen OAg-AcrA, which consists of the O-side chain of Brucella smooth lipopolysaccharide (sLPS) covalently linked to the carrier protein AcrA, the test is highly accurate, allows the differentiation of infected animals from those vaccinated with a rough strain or with a single dose of a smooth strain and fulfil the minimum diagnostic requirements established by the national and international regulations. SIGNIFICANCE AND IMPACT OF STUDY: This strip test could provide a rapid (10 min) and accurate diagnosis of bovine brucellosis in the field contributing to the control of the disease.


Assuntos
Brucella , Brucelose Bovina , Brucelose , Animais , Anticorpos Antibacterianos , Antígenos de Bactérias , Brucelose/diagnóstico , Brucelose Bovina/diagnóstico , Bovinos , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteínas , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Testes Sorológicos/veterinária
3.
J Clin Microbiol ; 58(3)2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31826960

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) is the main cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening clinical complication characterized by hemolytic anemia, thrombocytopenia, and acute renal failure that mainly affects children. A relevant feature of STEC strains is the production of Stx, and all of them express Stx1 and/or Stx2 regardless of the strain serotype. Therefore, Stx detection assays are considered the most suitable methods for the early detection of STEC infections. Single-domain antibodies from camelids (VHHs) exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis. In this work, we have exploited VHH technology for the development of an immunocapture assay for Stx2 detection. Thirteen anti-Stx2 VHHs previously obtained from a variable-domain repertoire library were selected and evaluated in 130 capture-detection pair combinations for Stx detection. Based on this analysis, two VHHs were selected and a double VHH-based biotin-streptavidin capture enzyme-linked immunosorbent assay (ELISA) with spectrophotometric detection was developed and optimized for Stx2 detection. This assay showed an excellent analytical and clinical sensitivity in both STEC culture supernatants and stool samples even higher than the sensitivity of a commercial ELISA. Furthermore, based on the analysis of stool samples, the VHH-based ELISA showed high correlation with stx2 detection by PCR and a commercial rapid membrane-based immunoassay. The intrinsic properties of VHHs (high target affinity and specificity, stability, and ease of expression at high yields in recombinant bacteria) and their optimal performance for Stx detection make them attractive tools for the diagnosis of HUS related to STEC (STEC-HUS).


Assuntos
Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Síndrome Hemolítico-Urêmica/diagnóstico , Toxina Shiga I/isolamento & purificação , Toxina Shiga II/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Anticorpos de Domínio Único/química , Animais , Argentina , Pré-Escolar , Chlorocebus aethiops , Diagnóstico Precoce , Fezes/microbiologia , Humanos , Sensibilidade e Especificidade , Células Vero
4.
PLoS Negl Trop Dis ; 13(3): e0007245, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30870417

RESUMO

BACKGROUND: TolT was originally described as a Trypanosoma cruzi molecule that accumulated on the trypomastigote flagellum bearing similarity to bacterial TolA colicins receptors. Preliminary biochemical studies indicated that TolT resolved in SDS-PAGE as ~3-5 different bands with sizes between 34 and 45 kDa, and that this heterogeneity could be ascribed to differences in polypeptide glycosylation. However, the recurrent identification of TolT-deduced peptides, and variations thereof, in trypomastigote proteomic surveys suggested an intrinsic TolT complexity, and prompted us to undertake a thorough reassessment of this antigen. METHODS/PRINCIPLE FINDINGS: Genome mining exercises showed that TolT constitutes a larger-than-expected family of genes, with at least 12 polymorphic members in the T. cruzi CL Brener reference strain and homologs in different trypanosomes. According to structural features, TolT deduced proteins could be split into three robust groups, termed TolT-A, TolT-B, and TolT-C, all of them showing marginal sequence similarity to bacterial TolA proteins and canonical signatures of surface localization/membrane association, most of which were herein experimentally validated. Further biochemical and microscopy-based characterizations indicated that this grouping may have a functional correlate, as TolT-A, TolT-B and TolT-C molecules showed differences in their expression profile, sub-cellular distribution, post-translational modification(s) and antigenic structure. We finally used a recently developed fluorescence magnetic beads immunoassay to validate a recombinant protein spanning the central and mature region of a TolT-B deduced molecule for Chagas disease serodiagnosis. CONCLUSION/SIGNIFICANCE: This study unveiled an unexpected genetic and biochemical complexity within the TolT family, which could be exploited for the development of novel T. cruzi biomarkers with diagnostic/therapeutic applications.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Polimorfismo Genético , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Biologia Computacional , Glicosilação , Imunoensaio , Proteínas de Membrana/classificação , Proteínas de Protozoários/classificação
5.
Biotechnol Bioeng ; 116(6): 1427-1438, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739323

RESUMO

In the last decades bacterial glycoengineering emerged as a new field as the result of the ability to transfer the Campylobacter jejuni N- glycosylation machinery into Escherichia coli for the production of recombinant glycoproteins that can be used as antigens for diagnosis, vaccines, and therapeutics. However, the identification of critical parameters implicated in the production process and its optimization to jump to a productive scale is still required. In this study, we developed a dual expression glycosylation vector for the production of the recombinant glycoprotein AcrA-O157, a novel antigen that allows the serodiagnosis of the infection with enterohemorrhagic E. coli O157 in humans. Volumetric productivity was studied in different culture media and found that 2xYP had 6.9-fold higher productivity than the extensively used LB. Subsequently, bioreactor batch and exponential-fed-batch cultures were designed to determine the influence of the specific growth rate (µ) on AcrA-O157 glycosylation efficiency, production kinetics, and specific productivity. At µmax , AcrA glycosylation with O157-polysaccharide and the specific synthesis rate were maximal, constituting the optimal physiological condition for AcrA-O157 production. Our findings should be considered for the design, optimization, and scaling up of AcrA-O157 production and other recombinant glycoproteins attractive for industrial applications.


Assuntos
Reatores Biológicos/microbiologia , Escherichia coli Êntero-Hemorrágica/metabolismo , Proteínas de Escherichia coli/metabolismo , Glicoproteínas/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Escherichia coli Êntero-Hemorrágica/genética , Escherichia coli Êntero-Hemorrágica/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Glicoproteínas/genética , Glicosilação , Humanos , Lipoproteínas/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Cell Microbiol ; 20(6): e12850, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29624823

RESUMO

Cyclic ß-1,2-D-glucans (CßG) are natural bionanopolymers present in the periplasmic space of many Proteobacteria. These molecules are sugar rings made of 17 to 25 D-glucose units linked exclusively by ß-1,2-glycosidic bonds. CßG are important for environmental sensing and osmoadaptation in bacteria, but most importantly, they play key roles in complex host-cell interactions such as symbiosis, pathogenesis, and immunomodulation. In the last years, the identification and characterisation of the enzymes involved in the synthesis of CßG allowed to know in detail the steps necessary for the formation of these sugar rings. Due to its peculiar structure, CßG can complex large hydrophobic molecules, a feature possibly related to its function in the interaction with the host. The capabilities of the CßG to function as molecular boxes and to solubilise hydrophobic compounds are attractive for application in the development of drugs, in food industry, nanotechnology, and chemistry. More importantly, its excellent immunomodulatory properties led to the proposal of CßG as a new class of adjuvants for vaccine development.


Assuntos
Interações Hospedeiro-Patógeno , Proteobactérias/fisiologia , Proteobactérias/patogenicidade , Simbiose , beta-Glucanas/química , beta-Glucanas/metabolismo , Vias Biossintéticas , Interações Hidrofóbicas e Hidrofílicas
7.
J Clin Microbiol ; 55(12): 3444-3453, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28978686

RESUMO

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi Assessment of parasitological cure upon treatment with available drugs relies on achieving consistent negative results in conventional parasitological and serological tests, which may take years to assess. Here, we evaluated the use of a recombinant T. cruzi antigen termed trypomastigote small surface antigen (TSSA) as an early serological marker of drug efficacy in T. cruzi-infected children. A cohort of 78 pediatric patients born to T. cruzi-infected mothers was included in this study. Only 39 of the children were infected with T. cruzi, and they were immediately treated with trypanocidal drugs. Serological responses against TSSA were evaluated in infected and noninfected populations during the follow-up period using an in-house enzyme-linked immunosorbent assay (ELISA) and compared to conventional serological methods. Anti-TSSA antibody titers decreased significantly faster than anti-whole parasite antibodies detected by conventional serology both in T. cruzi-infected patients undergoing effective treatment and in those not infected. The differential kinetics allowed a significant reduction in the required follow-up periods to evaluate therapeutic responses or to rule out maternal-fetal transmission. Finally, we present the case of a congenitally infected patient with an atypical course in whom TSSA provided an early marker for T. cruzi infection. In conclusion, we showed that TSSA was efficacious both for rapid assessment of treatment efficiency and for early negative diagnosis in infants at risk of congenital T. cruzi infection. Based upon these findings we propose the inclusion of TSSA for refining the posttherapeutic cure criterion and other diagnostic needs in pediatric Chagas disease.


Assuntos
Anticorpos Antiprotozoários/sangue , Doença de Chagas/diagnóstico , Monitoramento de Medicamentos/métodos , Testes Sorológicos/métodos , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Doença de Chagas/tratamento farmacológico , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Tripanossomicidas/administração & dosagem , Trypanosoma cruzi
8.
PLoS One ; 12(10): e0182452, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981517

RESUMO

Shiga toxin-producing Escherichia coli (STEC) is the major etiologic agent of hemolytic-uremic syndrome (HUS). The high rate of HUS emphasizes the urgency for the implementation of primary prevention strategies to reduce its public health impact. Argentina shows the highest rate of HUS worldwide, being E. coli O157 the predominant STEC-associated HUS serogroup (>70%), followed by E. coli O145 (>9%). To specifically detect these serogroups we aimed at developing highly specific monoclonal antibodies (mAbs) against the O-polysaccharide (O-PS) section of the lipopolysaccharide (LPS) of the dominant STEC-associated HUS serogroups in Argentina. The development of hybridomas secreting mAbs against O157 or O145 was carried out through a combined immunization strategy, involving adjuvated-bacterial immunizations followed by immunizations with recombinant O-PS-protein conjugates. We selected hybridoma clones that specifically recognized the engineered O-PS-protein conjugates of O157 or O145 serogroups. Indirect ELISA of heat-killed bacteria showed specific binding to O157 or O145 serogroups, respectively, while no cross-reactivity with other epidemiological important STEC strains, Brucella abortus, Salmonella group N or Yersinia enterocolitica O9 was observed. Western blot analysis showed specific recognition of the sought O-PS section of the LPS by all mAbs. Finally, the ability of the developed mAbs to bind the surface of whole bacteria cells was confirmed by flow cytometry, confocal microscopy and agglutination assays, indicating that these mAbs present an exceptional degree of specificity and relative affinity in the detection and identification of E. coli O157 and O145 serogroups. These mAbs may be of significant value for clinical diagnosis and food quality control applications. Thus, engineered O-PS specific moieties contained in the recombinant glycoconjugates used for combined immunization and hybridoma selection are an invaluable resource for the development of highly specific mAbs.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/microbiologia , Escherichia coli Shiga Toxigênica/imunologia , Ensaio de Imunoadsorção Enzimática , Escherichia coli O157/imunologia , Hibridomas , Antígenos O/imunologia , Sorogrupo , Sorotipagem
9.
Vet Microbiol ; 208: 174-180, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28888634

RESUMO

Brucellosis is a widespread zoonotic disease caused by Brucella spp. Brucella canis is the etiological agent of canine brucellosis, a disease that can lead to sterility in bitches and dogs causing important economic losses in breeding kennels. Early and accurate diagnosis of canine brucellosis is central to control the disease and lower the risk of transmission to humans. Here, we develop and validate enzyme and lateral flow immunoassays for improved serodiagnosis of canine brucellosis using as antigen the B. canis rough lipopolysaccharide (rLPS). The method used to obtain the rLPS allowed us to produce more homogeneous batches of the antigen that facilitated the standardization of the assays. To validate the assays, 284 serum samples obtained from naturally infected dogs and healthy animals were analyzed. For the B. canis-iELISA and B. canis-LFIA the diagnostic sensitivity was of 98.6%, and the specificity 99.5% and 100%, respectively. We propose the implementation of the B. canis-LFIA as a screening test in combination with the highly accurate laboratory g-iELISA. The B. canis-LFIA is a rapid, accurate and easy to use test, characteristics that make it ideal for the serological surveillance of canine brucellosis in the field or veterinary laboratories. Finally, a blind study including 1040 serum samples obtained from urban dogs showed a prevalence higher than 5% highlighting the need of new diagnostic tools for a more effective control of the disease in dogs and therefore to reduce the risk of transmission of this zoonotic pathogen to humans.


Assuntos
Brucelose/veterinária , Doenças do Cão/diagnóstico , Imunoensaio/veterinária , Animais , Argentina/epidemiologia , Brucelose/diagnóstico , Brucelose/epidemiologia , Brucelose/microbiologia , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Cães , Imunoensaio/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Medicina (B Aires) ; 77(3): 185-190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28643674

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening hemolytic-uremic syndrome (HUS). Despite the magnitude of the social and economic problems caused by HUS, no licensed vaccine or effective therapy is currently available for human use. Prevention of STEC infections continues being the most important measure to reduce HUS incidence. This is especially true for Argentina where HUS incidence among children is extremely high and shows an endemic pattern. The aim of this work was to investigate serologically adult staff of kindergartens in Buenos Aires city and suburban areas in order to detect possible carriers, and to educate personnel about good practices to reduce HUS transmission. We also assessed the microbiological quality of water and meal samples from the same kindergartens. We tested 67 healthy adults, 13 water supplies and 6 meals belonging to 6 public kindergartens. We analysed hand swabs for isolation of STEC and serum samples for the presence of antibodies against Stx and lipopolysaccharide (LPS) of O157 serogroup. We identified 46 Stx2-positive individuals, but only 7 for O157 LPS. No presence of STEC pathogens was detected in hands of staff, water or meal samples.


Assuntos
Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/isolamento & purificação , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/prevenção & controle , Adulto , Argentina/epidemiologia , Criança , Surtos de Doenças , Eletroforese , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/epidemiologia , Humanos , Fatores de Risco , Sorotipagem , População Urbana
11.
Medicina (B.Aires) ; 77(3): 185-190, jun. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-894455

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening hemolytic-uremic syndrome (HUS). Despite the magnitude of the social and economic problems caused by HUS, no licensed vaccine or effective therapy is currently available for human use. Prevention of STEC infections continues being the most important measure to reduce HUS incidence. This is especially true for Argentina where HUS incidence among children is extremely high and shows an endemic pattern. The aim of this work was to investigate serologically adult staff of kindergartens in Buenos Aires city and suburban areas in order to detect possible carriers, and to educate personnel about good practices to reduce HUS transmission. We also assessed the microbiological quality of water and meal samples from the same kindergartens. We tested 67 healthy adults, 13 water supplies and 6 meals belonging to 6 public kindergartens. We analysed hand swabs for isolation of STEC and serum samples for the presence of antibodies against Stx and lipopolysaccharide (LPS) of O157 serogroup. We identified 46 Stx2-positive individuals, but only 7 for O157 LPS. No presence of STEC pathogens was detected in hands of staff, water or meal samples.


Las infecciones bacterianas con Escherichia coli productor de toxina Shiga (Stx) (STEC) están implicadas en el desarrollo del síndrome urémico hemolítico (SUH). A pesar de la magnitud del problema social y económico causado por el SUH, actualmente no existe un tratamiento específico o una vacuna eficaz para uso humano. Por lo tanto, la prevención de las infecciones por STEC es la tarea central para reducir la incidencia del SUH. Esto es especialmente cierto para Argentina en donde el SUH muestra un comportamiento endémico y presenta una incidencia extremadamente alta entre los niños. En efecto, la mediana de casos notificados en menores de 5 años para el periodo 2010-2015 fue 306, mientras que la tasa de notificación fue 8.5 casos cada 100 000 menores/año (http://www.msal.gob.ar/images/stories/boletines/boletin_integrado_vigilancia_N335-SE45.pdf). El objetivo de este trabajo fue analizar serológicamente al personal adulto de jardines de infantes de la ciudad de Buenos Aires y el área suburbana con el fin de detectar portadores, y brindarles formación sobre las buenas prácticas para reducir la transmisión de infecciones con STEC y así evitar el SUH. También se evaluó la calidad microbiológica de las muestras de agua y de la comida elaborada en los mismos jardines. Hemos estudiado 67 adultos, a través del hisopado de manos para la búsqueda de STEC y suero para la presencia de anticuerpos contra Stx y el lipopolisacárido (LPS) de serogrupo O157. También se analizaron 13 suministros de agua y 6 muestras de comida pertenecientes a 6 jardines de infantes públicos. Se identificaron 46 individuos positivos para Stx2, pero solo 7 para LPS-O157. No se detectó presencia de patógenos STEC en las muestras de las manos del personal, ni en los reservorios de agua o muestras de comida.


Assuntos
Humanos , Criança , Adulto , Escherichia coli O157/isolamento & purificação , Infecções por Escherichia coli/prevenção & controle , Síndrome Hemolítico-Urêmica/microbiologia , Síndrome Hemolítico-Urêmica/prevenção & controle , Argentina/epidemiologia , População Urbana , Sorotipagem , Surtos de Doenças , Fatores de Risco , Eletroforese , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/transmissão , Infecções por Escherichia coli/epidemiologia , Síndrome Hemolítico-Urêmica/sangue
12.
Glycobiology ; 26(10): 1086-1096, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27053576

RESUMO

The ß1,2-glucans produced by bacteria are important in invasion, survival and immunomodulation in infected hosts be they mammals or plants. However, there has been a lack of information on proteins which recognize these molecules. This is partly due to the extremely limited availability of the sequence-defined oligosaccharides and derived probes for use in the study of their interactions. Here we have used the cyclic ß1,2-glucan (CßG) of the bacterial pathogen Brucella abortus, after removal of succinyl side chains, to prepare linearized oligosaccharides which were used to generate microarrays. We describe optimized conditions for partial depolymerization of the cyclic glucan by acid hydrolysis and conversion of the ß1,2-gluco-oligosaccharides, with degrees of polymerization 2-13, to neoglycolipids for the purpose of generating microarrays. By microarray analyses, we show that the C-type lectin receptor DC-SIGNR, like the closely related DC-SIGN we investigated earlier, binds to the ß1,2-gluco-oligosaccharides, as does the soluble immune effector serum mannose-binding protein. Exploratory studies with DC-SIGN are suggestive of the recognition also of the intact CßG by this receptor. These findings open the way to unravelling mechanisms of immunomodulation mediated by ß1,2-glucans in mammalian systems.


Assuntos
Brucella abortus/química , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Sondas Moleculares/análise , Sondas Moleculares/imunologia , Oligossacarídeos/análise , Oligossacarídeos/biossíntese , Brucella abortus/imunologia , Sistema Imunitário/imunologia , Análise em Microsséries , Oligossacarídeos/imunologia
13.
J Clin Microbiol ; 54(6): 1448-1455, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26984975

RESUMO

Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Brucella/imunologia , Brucelose/diagnóstico , Testes Sorológicos/métodos , Doenças dos Suínos/diagnóstico , Animais , Antígenos de Bactérias/genética , Feminino , Masculino , Curva ROC , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade , Suínos
14.
Biosens Bioelectron ; 80: 24-33, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26802749

RESUMO

Access to appropriate diagnostic tools is an essential component in the evaluation and improvement of global health. Additionally, timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods such as culturing, enzyme linked immunosorbent assay (ELISA) or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments making them not adaptable to point-of-care (PoC) needs at resource-constrained places and primary care settings. Therefore, there is an unmet need to develop portable, simple, rapid, and accurate methods for PoC detection of infections. Here, we present the development and validation of a portable, robust and inexpensive electrochemical magnetic microbeads-based biosensor (EMBIA) platform for PoC serodiagnosis of infectious diseases caused by different types of microorganisms (parasitic protozoa, bacteria and viruses). We demonstrate the potential use of the EMBIA platform for in situ diagnosis of human (Chagas disease and human brucellosis) and animal (bovine brucellosis and foot-and-mouth disease) infections clearly differentiating infected from non-infected individuals or animals. For Chagas disease, a more extensive validation of the test was performed showing that the EMBIA platform displayed an excellent diagnostic performance almost indistinguishable, in terms of specificity and sensitivity, from a fluorescent immunomagnetic assay and the conventional ELISA using the same combination of antigens. This platform technology could potentially be applicable to diagnose other infectious and non-infectious diseases as well as detection and/or quantification of biomarkers at the POC and primary care settings.


Assuntos
Técnicas Biossensoriais , Doenças Transmissíveis/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Testes Sorológicos/métodos , Animais , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Humanos , Magnetismo , Parasitos/isolamento & purificação , Parasitos/patogenicidade , Sistemas Automatizados de Assistência Junto ao Leito , Vírus/isolamento & purificação , Vírus/patogenicidade
15.
J Bacteriol ; 197(9): 1640-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733613

RESUMO

UNLABELLED: Cyclic ß-1,2-glucans (CßG) are periplasmic homopolysaccharides that play an important role in the virulence and interaction of Brucella with the host. Once synthesized in the cytoplasm by the CßG synthase (Cgs), CßG are transported to the periplasm by the CßG transporter (Cgt) and succinylated by the CßG modifier enzyme (Cgm). Here, we used a bacterial two-hybrid system and coimmunoprecipitation techniques to study the interaction network between these three integral inner membrane proteins. Our results indicate that Cgs, Cgt, and Cgm can form both homotypic and heterotypic interactions. Analyses carried out with Cgs mutants revealed that the N-terminal region of the protein (Cgs region 1 to 418) is required to sustain the interactions with Cgt and Cgm as well as with itself. We demonstrated by single-cell fluorescence analysis that in Brucella, Cgs and Cgt are focally distributed in the membrane, particularly at the cell poles, whereas Cgm is mostly distributed throughout the membrane with a slight accumulation at the poles colocalizing with the other partners. In summary, our results demonstrate that Cgs, Cgt, and Cgm form a membrane-associated biosynthetic complex. We propose that the formation of a membrane complex could serve as a mechanism to ensure the fidelity of CßG biosynthesis by coordinating their synthesis with the transport and modification. IMPORTANCE: In this study, we analyzed the interaction and localization of the proteins involved in the synthesis, transport, and modification of Brucella abortus cyclic ß-1,2-glucans (CßG), which play an important role in the virulence and interaction of Brucella with the host. We demonstrate that these proteins interact, forming a complex located mainly at the cell poles; this is the first experimental evidence of the existence of a multienzymatic complex involved in the metabolism of osmoregulated periplasmic glucans in bacteria and argues for another example of pole differentiation in Brucella. We propose that the formation of this membrane complex could serve as a mechanism to ensure the fidelity of CßG biosynthesis by coordinating synthesis with the transport and modification.


Assuntos
Brucella abortus/genética , Brucella abortus/metabolismo , Proteínas de Membrana/metabolismo , Multimerização Proteica , Succinatos/metabolismo , beta-Glucanas/metabolismo , Imunoprecipitação , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
16.
Mol Cell Proteomics ; 14(4): 974-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25670804

RESUMO

Glucans are polymers of d-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes, including immunomodulation, anticancer activities, pathogen virulence, and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure-function studies and their exploitation. We describe construction of a "glucome" microarray, the first sequence-defined glycome-scale microarray, using a "designer" approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear "homo" and "hetero" and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or ß-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signaling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides.


Assuntos
Glucanos/metabolismo , Análise Serial de Proteínas/métodos , Proteoma/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Anticorpos/metabolismo , Sequência de Carboidratos , Moléculas de Adesão Celular/metabolismo , Sistema Imunitário/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Camundongos , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Vacinas/imunologia
17.
J Clin Microbiol ; 53(2): 528-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25472487

RESUMO

Human infection with Shiga toxin-producing Escherichia coli (STEC) is a major cause of postdiarrheal hemolytic-uremic syndrome (HUS), a life-threatening condition characterized by hemolytic anemia, thrombocytopenia, and acute renal failure. E. coli O157:H7 is the dominant STEC serotype associated with HUS worldwide, although non-O157 STEC serogroups can cause a similar disease. The detection of anti-O157 E. coli lipopolysaccharide (LPS) antibodies in combination with stool culture and detection of free fecal Shiga toxin considerably improves the diagnosis of STEC infections. In the present study, we exploited a bacterial glycoengineering technology to develop recombinant glycoproteins consisting of the O157, O145, or O121 polysaccharide attached to a carrier protein as serogroup-specific antigens for the serological diagnosis of STEC-associated HUS. Our results demonstrate that using these antigens in indirect ELISAs (glyco-iELISAs), it is possible to clearly discriminate between STEC O157-, O145-, and O121-infected patients and healthy children, as well as to confirm the diagnosis in HUS patients for whom the classical diagnostic procedures failed. Interestingly, a specific IgM response was detected in almost all the analyzed samples, indicating that it is possible to detect the infection in the early stages of the disease. Additionally, in all the culture-positive HUS patients, the serotype identified by glyco-iELISAs was in accordance with the serotype of the isolated strain, indicating that these antigens are valuable not only for diagnosing HUS caused by the O157, O145, and O121 serogroups but also for serotyping and guiding the subsequent steps to confirm diagnosis.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Glicoproteínas/imunologia , Síndrome Hemolítico-Urêmica/diagnóstico , Sorotipagem/métodos , Escherichia coli Shiga Toxigênica/imunologia , Antígenos de Bactérias/genética , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática/métodos , Glicoproteínas/genética , Humanos , Imunoglobulina M/sangue , Lactente , Recém-Nascido , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Estudos Retrospectivos , Método Simples-Cego
18.
Vet Microbiol ; 172(3-4): 455-65, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24984948

RESUMO

Brucellosis is a highly contagious zoonosis that affects livestock and human beings. Laboratory diagnosis of bovine brucellosis mainly relies on serological diagnosis using serum and/or milk samples. Although there are several serological tests with different diagnostic performance and capacity to differentiate vaccinated from infected animals, there is still no standardized reference antigen for the disease. Here we validate the first recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of bovine brucellosis. This antigen can be produced in homogeneous batches without the need of culturing pathogenic brucellae; all characteristics that make it appropriate for standardization. An indirect immunoassay based on the detection of anti O-polysaccharide IgG antibodies in bovine samples was developed coupling OAg-AcrA to magnetic beads or ELISA plates. As a proof of concept and to validate the antigen, we analyzed serum, whole blood and milk samples obtained from non-infected, experimentally infected and vaccinated animals included in a vaccination/infection trial performed in our laboratory as well as more than 1000 serum and milk samples obtained from naturally infected and S19-vaccinated animals from Argentina. Our results demonstrate that OAg-AcrA-based assays are highly accurate for diagnosis of bovine brucellosis, even in vaccinated herds, using different types of samples and in different platforms. We propose this novel recombinant glycoprotein as an antigen suitable for the development of new standard immunological tests for screening and confirmatory diagnosis of bovine brucellosis in regions or countries with brucellosis-control programs.


Assuntos
Antígenos de Bactérias/imunologia , Brucella/imunologia , Brucelose Bovina/diagnóstico , Glicoproteínas/imunologia , Animais , Vacinas Bacterianas/imunologia , Brucelose Bovina/prevenção & controle , Bovinos , Técnica Indireta de Fluorescência para Anticorpo/métodos , Técnica Indireta de Fluorescência para Anticorpo/veterinária , Humanos , Leite/imunologia , Leite/virologia , Engenharia de Proteínas , Proteínas Recombinantes , Reprodutibilidade dos Testes , Testes Sorológicos/veterinária
19.
PLoS Negl Trop Dis ; 7(2): e2048, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459192

RESUMO

Brucellosis is a highly contagious zoonosis and still a major human health problem in endemic areas of the world. Although several diagnostic tools are available, most of them are difficult to implement especially in developing countries where complex health facilities are limited. Taking advantage of the identical structure and composition of the Brucella spp. and Yersinia enterocolitica O:9 O-polysaccharide, we explored the application of a recombinant Y. enterocolitica O:9-polysaccharide-protein conjugate (OAg-AcrA) as a novel antigen for diagnosis of human brucellosis. We have developed and validated an indirect immunoassay using OAg-AcrA coupled to magnetic beads. OAg-AcrA was produced and purified with high yields in Y. enterocolitica O:9 cells co-expressing the oligosaccharyltransferase PglB and the protein acceptor AcrA of Campylobacter jejuni without the need for culturing Brucella. Expression of PglB and AcrA in Y. enterocolitica resulted in the transfer of the host O-polysaccharide from its lipid carrier to AcrA. To validate the assay and determine the cutoff values, a receiver-operating characteristic analysis was performed using a panel of characterized serum samples obtained from healthy individuals and patients of different clinical groups. Our results indicate that, using this assay, it is possible to detect infection caused by the three main human brucellosis agents (B. abortus, B. melitensis and B. suis) and select different cutoff points to adjust sensitivity and specificity levels as needed. A cutoff value of 13.20% gave a sensitivity of 100% and a specificity of 98.57%, and a cutoff value of 16.15% resulted in a test sensitivity and specificity of 93.48% and 100%, respectively. The high diagnostic accuracy, low cost, reduced assay time and simplicity of this new glycoconjugate-magnetic beads assay makes it an attractive diagnostic tool for using not only in clinics and brucellosis reference laboratories but also in locations with limited laboratory infrastructure and/or minimally trained community health workers.


Assuntos
Anticorpos Antibacterianos/sangue , Antígenos de Bactérias , Brucelose/diagnóstico , Testes Diagnósticos de Rotina/métodos , Magnetismo , Microesferas , Humanos , Imunoensaio/métodos , Sensibilidade e Especificidade
20.
Microb Cell Fact ; 11: 13, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22276812

RESUMO

BACKGROUND: Immune responses directed towards surface polysaccharides conjugated to proteins are effective in preventing colonization and infection of bacterial pathogens. Presently, the production of these conjugate vaccines requires intricate synthetic chemistry for obtaining, activating, and attaching the polysaccharides to protein carriers. Glycoproteins generated by engineering bacterial glycosylation machineries have been proposed to be a viable alternative to traditional conjugation methods. RESULTS: In this work we expressed the C. jejuni oligosaccharyltansferase (OTase) PglB, responsible for N-linked protein glycosylation together with a suitable acceptor protein (AcrA) in Yersinia enterocolitica O9 cells. MS analysis of the acceptor protein demonstrated the transfer of a polymer of N-formylperosamine to AcrA in vivo. Because Y. enterocolitica O9 and Brucella abortus share an identical O polysaccharide structure, we explored the application of the resulting glycoprotein in vaccinology and diagnostics of brucellosis, one of the most common zoonotic diseases with over half a million new cases annually. Injection of the glycoprotein into mice generated an IgG response that recognized the O antigen of Brucella, although this response was not protective against a challenge with a virulent B. abortus strain. The recombinant glycoprotein coated onto magnetic beads was efficient in differentiating between naïve and infected bovine sera. CONCLUSION: Bacterial engineered glycoproteins show promising applications for the development on an array of diagnostics and immunoprotective opportunities in the future.


Assuntos
Vacinas Bacterianas/imunologia , Brucelose Bovina/diagnóstico , Campylobacter jejuni/enzimologia , Glicoproteínas/biossíntese , Engenharia de Proteínas , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Vacinas Bacterianas/biossíntese , Vacinas Bacterianas/genética , Brucelose Bovina/prevenção & controle , Bovinos , Glicoproteínas/química , Glicoproteínas/genética , Glicosilação , Hexosaminas/metabolismo , Hexosiltransferases/biossíntese , Hexosiltransferases/genética , Imunoglobulina G/imunologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Antígenos O/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Yersinia enterocolitica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...