Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 8: 101480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434878

RESUMO

Histological processing of mineralised tissue (e.g. bone) allows examining the anatomy of cells and tissues as well as the material properties of the tissue. However, resin-embedding offers limited control over the specimen position for cutting. Moreover, specific anatomical planes (coronal, sagittal) or defined landmarks are often missed with standard microtome sectioning. Here we describe a method to precisely locate a specific anatomical 2D plane or any anatomical feature of interest (e.g. bone lesions, newly formed bone, etc.) using 3D micro computed tomography (microCT), and to expose it using controlled-angle microtome cutting. The resulting sections and corresponding specimen's block surface offer correlative information of the same anatomical location, which can then be analysed using multiscale imaging. Moreover, this method can be combined with immunohistochemistry (IHC) to further identify any component of the bone microenvironment (cells, extracellular matrix, proteins, etc.) and guide subsequent in-depth analysis. Overall, this method allows to:•Cut your specimens in a consistent position and precise manner using microCT-based controlled-angle microtome sectioning.•Locate and expose a specific anatomical plane (coronal, sagittal plane) or any other anatomical landmarks of interest based on microCT.•Identify any cell or tissue markers based on IHC to guide further in-depth examination of those regions of interest.

2.
Sci Adv ; 6(44)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33115741

RESUMO

Humanized mouse models are increasingly studied to recapitulate human-like bone physiology. While human and mouse bone architectures differ in multiple scales, the extent to which chimeric human-mouse bone physiologically interacts and structurally integrates remains unknown. Here, we identify that humanized bone is formed by a mosaic of human and mouse collagen, structurally integrated within the same bone organ, as shown by immunohistochemistry. Combining this with materials science techniques, we investigate the extracellular matrix of specific human and mouse collagen regions. We show that human-like osteocyte lacunar-canalicular network is retained within human collagen regions and is distinct to that of mouse tissue. This multiscale analysis shows that human and mouse tissues physiologically integrate into a single, functional bone tissue while maintaining their species-specific ultrastructural differences. These results offer an original method to validate and advance tissue-engineered human-like bone in chimeric animal models, which grow to be eloquent tools in biomedical research.

3.
Acta Biomater ; 23: 282-294, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26004222

RESUMO

Scaffold architecture guides bone formation. However, in critical-sized long bone defects additional BMP-mediated osteogenic stimulation is needed to form clinically relevant volumes of new bone. The hierarchical structure of bone determines its mechanical properties. Yet, the micro- and nanostructure of BMP-mediated fast-forming bone has not been compared with slower regenerating bone without BMP. We investigated the combined effects of scaffold architecture (physical cue) and BMP stimulation (biological cue) on bone regeneration. It was hypothesized that a structured scaffold directs tissue organization through structural guidance and load transfer, while BMP stimulation accelerates bone formation without altering the microstructure at different length scales. BMP-loaded medical grade polycaprolactone-tricalcium phosphate scaffolds were implanted in 30mm tibial defects in sheep. BMP-mediated bone formation after 3 and 12 months was compared with slower bone formation with a scaffold alone after 12 months. A multiscale analysis based on microcomputed tomography, histology, polarized light microscopy, backscattered electron microscopy, small angle X-ray scattering and nanoindentation was used to characterize bone volume, collagen fiber orientation, mineral particle thickness and orientation, and local mechanical properties. Despite different observed kinetics in bone formation, similar structural properties on a microscopic and sub-micron level seem to emerge in both BMP-treated and scaffold only groups. The guiding effect of the scaffold architecture is illustrated through structural differences in bone across different regions. In the vicinity of the scaffold increased tissue organization is observed at 3 months. Loading along the long bone axis transferred through the scaffold defines bone micro- and nanostructure after 12 months.


Assuntos
Proteínas Morfogenéticas Ósseas/administração & dosagem , Implantes de Medicamento/administração & dosagem , Regeneração Tecidual Guiada/instrumentação , Fraturas da Tíbia/terapia , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Terapia Combinada/métodos , Análise de Falha de Equipamento , Consolidação da Fratura/efeitos dos fármacos , Desenho de Prótese , Radiografia , Ovinos , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/patologia , Engenharia Tecidual/instrumentação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...