Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Crit Rev Biochem Mol Biol ; 50(3): 231-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25788028

RESUMO

Proteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed.


Assuntos
Técnicas Citológicas , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Transferência Ressonante de Energia de Fluorescência , Humanos , Técnicas In Vitro , Fusão de Membrana , Proteolipídeos/metabolismo
3.
J Biol Chem ; 290(16): 10518-34, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25716318

RESUMO

Sec1/Munc18 (SM) proteins are essential for membrane trafficking, but their molecular mechanism remains unclear. Using a single vesicle-vesicle content-mixing assay with reconstituted neuronal SNAREs, synaptotagmin-1, and complexin-1, we show that the neuronal SM protein Munc18a/nSec1 has no effect on the intrinsic kinetics of both spontaneous fusion and Ca(2+)-triggered fusion between vesicles that mimic synaptic vesicles and the plasma membrane. However, wild type Munc18a reduced vesicle association ∼50% when the vesicles bearing the t-SNAREs syntaxin-1A and SNAP-25 were preincubated with Munc18 for 30 min. Single molecule experiments with labeled SNAP-25 indicate that the reduction of vesicle association is a consequence of sequestration of syntaxin-1A by Munc18a and subsequent release of SNAP-25 (i.e. Munc18a captures syntaxin-1A via its high affinity interaction). Moreover, a phosphorylation mimic mutant of Munc18a with reduced affinity to syntaxin-1A results in less reduction of vesicle association. In summary, Munc18a does not directly affect fusion, although it has an effect on the t-SNARE complex, depending on the presence of other factors and experimental conditions. Our results suggest that Munc18a primarily acts at the prefusion stage.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Cálcio/metabolismo , Fusão de Membrana , Proteínas Munc18/genética , Proteínas do Tecido Nervoso/genética , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Ligação Proteica , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/química , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Termodinâmica , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
4.
Nature ; 518(7537): 61-7, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25581794

RESUMO

Evolutionarily conserved SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptors) proteins form a complex that drives membrane fusion in eukaryotes. The ATPase NSF (N-ethylmaleimide sensitive factor), together with SNAPs (soluble NSF attachment protein), disassembles the SNARE complex into its protein components, making individual SNAREs available for subsequent rounds of fusion. Here we report structures of ATP- and ADP-bound NSF, and the NSF/SNAP/SNARE (20S) supercomplex determined by single-particle electron cryomicroscopy at near-atomic to sub-nanometre resolution without imposing symmetry. Large, potentially force-generating, conformational differences exist between ATP- and ADP-bound NSF. The 20S supercomplex exhibits broken symmetry, transitioning from six-fold symmetry of the NSF ATPase domains to pseudo four-fold symmetry of the SNARE complex. SNAPs interact with the SNARE complex with an opposite structural twist, suggesting an unwinding mechanism. The interfaces between NSF, SNAPs, and SNAREs exhibit characteristic electrostatic patterns, suggesting how one NSF/SNAP species can act on many different SNARE complexes.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cricetulus , Microscopia Crioeletrônica , Modelos Moleculares , Complexos Multiproteicos/ultraestrutura , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/ultraestrutura , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas SNARE/ultraestrutura , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/ultraestrutura
5.
Elife ; 3: e03756, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25122624

RESUMO

Previously we showed that fast Ca(2+)-triggered vesicle fusion with reconstituted neuronal SNAREs and synaptotagmin-1 begins from an initial hemifusion-free membrane point contact, rather than a hemifusion diaphragm, using a single vesicle-vesicle lipid/content mixing assay (Diao et al., 2012). When complexin-1 was included, a more pronounced Ca(2+)-triggered fusion burst was observed, effectively synchronizing the process. Here we show that complexin-1 also reduces spontaneous fusion in the same assay. Moreover, distinct effects of several complexin-1 truncation mutants on spontaneous and Ca(2+)-triggered fusion closely mimic those observed in neuronal cultures. The very N-terminal domain is essential for synchronization of Ca(2+)-triggered fusion, but not for suppression of spontaneous fusion, whereas the opposite is true for the C-terminal domain. By systematically varying the complexin-1 concentration, we observed differences in titration behavior for spontaneous and Ca(2+)-triggered fusion. Taken together, complexin-1 utilizes distinct mechanisms for synchronization of Ca(2+)-triggered fusion and inhibition of spontaneous fusion.


Assuntos
Cálcio/química , Fusão de Membrana , Vesículas Sinápticas/química , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Bioensaio , Transporte Biológico , Cálcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exocitose , Expressão Gênica , Modelos Biológicos , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Redobramento de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 25 Associada a Sinaptossoma/química , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
6.
J Am Chem Soc ; 135(41): 15274-7, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24083833

RESUMO

In synaptic terminals, complexin is thought to have inhibitory and activating roles for spontaneous "mini" release and evoked synchronized neurotransmitter release, respectively. We used single vesicle-vesicle microscopy imaging to study the effect of complexin-1 on the on-rate of docking between vesicles that mimic synaptic vesicles and the plasma membrane. We found that complexin-1 enhances the on-rate of docking of synaptic vesicle mimics containing full-length synaptobrevin-2 and full-length synaptotagmin-1 to plasma membrane-mimicking vesicles containing full-length syntaxin-1A and SNAP-25A. This effect requires the C-terminal domain of complexin-1, which binds to the membrane, the presence of PS in the membrane, and the core region of complexin-1, which binds to the SNARE complex.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas SNARE/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Cálcio/química , Cálcio/metabolismo , Membrana Celular/química , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas SNARE/química , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo
7.
J Biol Chem ; 288(34): 24984-91, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836889

RESUMO

Vesicle trafficking in eukaryotic cells is facilitated by SNARE-mediated membrane fusion. The ATPase NSF (N-ethylmaleimide-sensitive factor) and the adaptor protein α-SNAP (soluble NSF attachment protein) disassemble all SNARE complexes formed throughout different pathways, but the effect of SNARE sequence and domain variation on the poorly understood disassembly mechanism is unknown. By measuring SNARE-stimulated ATP hydrolysis rates, Michaelis-Menten constants for disassembly, and SNAP-SNARE binding constants for four different ternary SNARE complexes and one binary complex, we found a conserved mechanism, not influenced by N-terminal SNARE domains. α-SNAP and the ternary SNARE complex form a 1:1 complex as revealed by multiangle light scattering. We propose a model of NSF-mediated disassembly in which the reaction is initiated by a 1:1 interaction between α-SNAP and the ternary SNARE complex, followed by NSF binding. Subsequent additional α-SNAP binding events may occur as part of a processive disassembly mechanism.


Assuntos
Modelos Químicos , Complexos Multiproteicos/química , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas SNARE/química , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Cricetinae , Cricetulus , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Ligação Proteica , Ratos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo
8.
J Biol Chem ; 288(32): 23436-45, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23775070

RESUMO

SNARE proteins promote membrane fusion by forming a four-stranded parallel helical bundle that brings the membranes into close proximity. Post-fusion, the complex is disassembled by an AAA+ ATPase called N-ethylmaleimide-sensitive factor (NSF). We present evidence that NSF uses a processive unwinding mechanism to disassemble SNARE proteins. Using a real-time disassembly assay based on fluorescence dequenching, we correlate NSF-driven disassembly rates with the SNARE-activated ATPase activity of NSF. Neuronal SNAREs activate the ATPase rate of NSF by ∼26-fold. One SNARE complex takes an average of ∼5 s to disassemble in a process that consumes ∼50 ATP. Investigations of substrate requirements show that NSF is capable of disassembling a truncated SNARE substrate consisting of only the core SNARE domain, but not an unrelated four-stranded coiled-coil. NSF can also disassemble an engineered double-length SNARE complex, suggesting a processive unwinding mechanism. We further investigated processivity using single-turnover experiments, which show that SNAREs can be unwound in a single encounter with NSF. We propose a processive helicase-like mechanism for NSF in which ∼1 residue is unwound for every hydrolyzed ATP molecule.


Assuntos
Trifosfato de Adenosina/química , Proteínas Sensíveis a N-Etilmaleimida/química , Proteínas SNARE/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Humanos , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Estrutura Terciária de Proteína , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
9.
Elife ; 2: e00592, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23638301

RESUMO

α-Synuclein is a presynaptic protein that is implicated in Parkinson's and other neurodegenerative diseases. Physiologically, native α-synuclein promotes presynaptic SNARE-complex assembly, but its molecular mechanism of action remains unknown. Here, we found that native α-synuclein promotes clustering of synaptic-vesicle mimics, using a single-vesicle optical microscopy system. This vesicle-clustering activity was observed for both recombinant and native α-synuclein purified from mouse brain. Clustering was dependent on specific interactions of native α-synuclein with both synaptobrevin-2/VAMP2 and anionic lipids. Out of the three familial Parkinson's disease-related point mutants of α-synuclein, only the lipid-binding deficient mutation A30P disrupted clustering, hinting at a possible loss of function phenotype for this mutant. α-Synuclein had little effect on Ca(2+)-triggered fusion in our reconstituted single-vesicle system, consistent with in vivo data. α-Synuclein may therefore lead to accumulation of synaptic vesicles at the active zone, providing a 'buffer' of synaptic vesicles, without affecting neurotransmitter release itself. DOI:http://dx.doi.org/10.7554/eLife.00592.001.


Assuntos
Fosfolipídeos/metabolismo , Vesículas Sinápticas/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , alfa-Sinucleína/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/isolamento & purificação , Animais , Encéfalo/metabolismo , Camundongos , Mimetismo Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Sinaptotagmina I/genética , Sinaptotagmina I/isolamento & purificação
10.
Elife ; 1: e00109, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23240085

RESUMO

The molecular underpinnings of synaptic vesicle fusion for fast neurotransmitter release are still unclear. Here, we used a single vesicle-vesicle system with reconstituted SNARE and synaptotagmin-1 proteoliposomes to decipher the temporal sequence of membrane states upon Ca(2+)-injection at 250-500 µM on a 100-ms timescale. Furthermore, detailed membrane morphologies were imaged with cryo-electron microscopy before and after Ca(2+)-injection. We discovered a heterogeneous network of immediate and delayed fusion pathways. Remarkably, all instances of Ca(2+)-triggered immediate fusion started from a membrane-membrane point-contact and proceeded to complete fusion without discernible hemifusion intermediates. In contrast, pathways that involved a stable hemifusion diaphragm only resulted in fusion after many seconds, if at all. When complexin was included, the Ca(2+)-triggered fusion network shifted towards the immediate pathway, effectively synchronizing fusion, especially at lower Ca(2+)-concentration. Synaptic proteins may have evolved to select this immediate pathway out of a heterogeneous network of possible membrane fusion pathways.DOI:http://dx.doi.org/10.7554/eLife.00109.001.


Assuntos
Cálcio/metabolismo , Fusão de Membrana , Proteolipídeos/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Potenciais de Ação , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Transporte Biológico , Cálcio/farmacologia , Expressão Gênica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteolipídeos/ultraestrutura , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/efeitos dos fármacos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Proteína 25 Associada a Sinaptossoma/genética , Sinaptotagmina I/genética , Sintaxina 1/genética , Sintaxina 1/metabolismo , Fatores de Tempo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo
11.
EMBO J ; 28(18): 2689-96, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19644443

RESUMO

Synthesis of adenosine triphosphate ATP, the 'biological energy currency', is accomplished by F(o)F(1)-ATP synthase. In the plasma membrane of Escherichia coli, proton-driven rotation of a ring of 10 c subunits in the F(o) motor powers catalysis in the F(1) motor. Although F(1) uses 120 degrees stepping during ATP synthesis, models of F(o) predict either an incremental rotation of c subunits in 36 degrees steps or larger step sizes comprising several fast substeps. Using single-molecule fluorescence resonance energy transfer, we provide the first experimental determination of a 36 degrees sequential stepping mode of the c-ring during ATP synthesis.


Assuntos
ATPases Translocadoras de Prótons/fisiologia , Trifosfato de Adenosina/metabolismo , Biofísica/métodos , Catálise , Escherichia coli/enzimologia , Transferência Ressonante de Energia de Fluorescência/métodos , Bicamadas Lipídicas/química , Modelos Biológicos , Método de Monte Carlo , Mutação , Fótons , Plasmídeos/metabolismo , Conformação Proteica , ATPases Translocadoras de Prótons/metabolismo , Prótons , Rotação
12.
Biochim Biophys Acta ; 1777(7-8): 599-604, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18423392

RESUMO

The vacuolar (H(+))-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for both acidification of intracellular compartments and, for certain cell types, proton transport across the plasma membrane. Intracellular V-ATPases function in both endocytic and intracellular membrane traffic, processing and degradation of macromolecules in secretory and digestive compartments, coupled transport of small molecules such as neurotransmitters and ATP and in the entry of pathogenic agents, including envelope viruses and bacterial toxins. V-ATPases are present in the plasma membrane of renal cells, osteoclasts, macrophages, epididymal cells and certain tumor cells where they are important for urinary acidification, bone resorption, pH homeostasis, sperm maturation and tumor cell invasion, respectively. The V-ATPases are composed of a peripheral domain (V(1)) that carries out ATP hydrolysis and an integral domain (V(0)) responsible for proton transport. V(1) contains eight subunits (A-H) while V(0) contains six subunits (a, c, c', c'', d and e). V-ATPases operate by a rotary mechanism in which ATP hydrolysis within V(1) drives rotation of a central rotary domain, that includes a ring of proteolipid subunits (c, c' and c''), relative to the remainder of the complex. Rotation of the proteolipid ring relative to subunit a within V(0) drives active transport of protons across the membrane. Two important mechanisms of regulating V-ATPase activity in vivo are reversible dissociation of the V(1) and V(0) domains and changes in coupling efficiency of proton transport and ATP hydrolysis. This review focuses on recent advances in our lab in understanding the structure and regulation of the V-ATPases.


Assuntos
ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Membrana Celular/enzimologia , Endocitose , Endossomos/enzimologia , Cinética , Lisossomos/enzimologia , Modelos Moleculares
13.
Proteins ; 73(2): 458-67, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18442134

RESUMO

Chemical crosslinking mediated by short bifunctional reagents has been widely used for determining physical relationships among polypeptides in multisubunit proteins, but less often for functional studies. Here we introduce the approach of tethering polypeptides by using bifunctional reagents containing a lengthy, flexible PEG linker as a form of crosslinking especially suited to functional analyses. The rotary molecular motor ATP synthase was used as a model subject. Single cysteine residues were introduced into selected positions of ATP synthase epsilon subunit, a component of the rotor subcomplex of the enzyme, and the unrelated maltose binding protein (MBP), then the two purified recombinant proteins were crosslinked by means of a dimaleimido-PEG cross-linking agent. Following purification, the epsilon-PEG-MBP was incorporated into membrane-bound ATP synthase by reconstitution with epsilon-depleted F(1)-ATPase and membrane vesicles that had been stripped of endogenous F(1). ATP synthase reconstituted using epsilon-PEG-MBP had reduced ATP hydrolytic activity that was uncoupled from the pumping of H(+), indicating the physical blockage of rotation of the gammaepsilonc(10) rotor by the conjugated MBP, whereas enzyme reconstituted with epsilon-PEG was normal. These results directly demonstrate the feasibility of studying mechanistic features of molecular motors through PEG-based conjugation of unrelated proteins. Since tethering polypeptides provides a means of maintaining proximity without directly specifying or modifying interactions, application of the general method to other types of protein functional studies is envisioned.


Assuntos
Adenosina Trifosfatases/química , Reagentes de Ligações Cruzadas/química , Peptídeos/química , Polietilenoglicóis/química , Proteínas de Transporte/química , Proteínas Ligantes de Maltose , Ligação Proteica , Proteínas Recombinantes/química
14.
Arch Biochem Biophys ; 476(1): 33-42, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18406336

RESUMO

The vacuolar ATPases (or V-ATPases) are ATP-driven proton pumps that function to both acidify intracellular compartments and to transport protons across the plasma membrane. Intracellular V-ATPases function in such normal cellular processes as receptor-mediated endocytosis, intracellular membrane traffic, prohormone processing, protein degradation and neurotransmitter uptake, as well as in disease processes, including infection by influenza and other viruses and killing of cells by anthrax and diphtheria toxin. Plasma membrane V-ATPases are important in such physiological processes as urinary acidification, bone resorption and sperm maturation as well as in human diseases, including osteopetrosis, renal tubular acidosis and tumor metastasis. V-ATPases are large multi-subunit complexes composed of a peripheral domain (V(1)) responsible for hydrolysis of ATP and an integral domain (V(0)) that carries out proton transport. Proton transport is coupled to ATP hydrolysis by a rotary mechanism. V-ATPase activity is regulated in vivo using a number of mechanisms, including reversible dissociation of the V(1) and V(0) domains, changes in coupling efficiency of proton transport and ATP hydrolysis and changes in pump density through reversible fusion of V-ATPase containing vesicles. V-ATPases are emerging as potential drug targets in treating a number of human diseases including osteoporosis and cancer.


Assuntos
ATPases Vacuolares Próton-Translocadoras/fisiologia , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Humanos , Transporte de Íons , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia , ATPases Vacuolares Próton-Translocadoras/química
15.
J Biol Chem ; 282(47): 34058-65, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17897940

RESUMO

The vacuolar ATPases (V-ATPases) are multisubunit complexes containing two domains. The V(1) domain (subunits A-H) is peripheral and carries out ATP hydrolysis. The V(0) domain (subunits a, c, c', c'', d, and e) is membrane-integral and carries out proton transport. In yeast, there are three proteolipid subunits as follows: subunit c (Vma3p), subunit c' (Vma11p), and subunit c'' (Vma16p). The proteolipid subunits form a six-membered ring containing single copies of subunits c' and c'' and four copies of subunit c. To determine the possible arrangements of proteolipid subunits in V(0) that give rise to a functional V-ATPase complex, a series of gene fusions was constructed to constrain the arrangement of pairs of subunits in the ring. Fusions containing c'' employed a truncated version of this protein lacking the first putative transmembrane helix (which we have shown previously to be functional), to ensure that the N and C termini of all subunits were located on the luminal side of the membrane. Fusion constructs were expressed in strains disrupted in c', c'', or both but containing a wild copy of c to ensure the presence of the required number of copies of subunit c. The c-c''(DeltaTM1), c''(DeltaTM1)-c', and c'-c constructs all complemented the vma(-) phenotype and gave rise to complexes possessing greater than 25% of wild-type levels of activity. By contrast, neither the c-c', the c'-c''(DeltaTM1), nor the c''(DeltaTM1)-c constructs complemented the vma(-) phenotype. These results suggest that functionally assembled V-ATPase complexes contain the proteolipid subunits arranged in a unique order in the ring.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Estrutura Quaternária de Proteína/genética , Estrutura Secundária de Proteína/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/genética
16.
J Biol Chem ; 281(18): 12408-13, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16531410

RESUMO

The b subunit dimer of Escherichia coli ATP synthase serves essential roles as an assembly factor for the enzyme and as a stator during rotational catalysis. To investigate the functional importance of its coiled coil dimerization domain, a series of internal deletions including each individual residue between Lys-100 and Ala-105 (b(deltaK100)-b(deltaA105)), b(deltaK100-A103), and b(deltaK100-Q106) as well as a control b(K100A) missense mutation were prepared. All of the mutants supported assembly of ATP synthase, but all single-residue deletions failed to support growth on acetate, indicating a severe defect in oxidative phosphorylation, and b(deltaK100-Q106) displayed moderately reduced growth. The membrane-bound ATPase activities of these strains showed a related reduction in sensitivity to dicyclohexylcarbodiimide, indicative of uncoupling. Analysis of dimerization of the soluble constructs of b(deltaK100) and the multiple-residue deletions by sedimentation equilibrium revealed reduced dimerization compared with wild type for all deletions, with b(deltaK100-Q106) most severely affected. In cross-linking studies it was found that F1-ATPase can mediate the dimerization of some soluble b constructs but did not mediate dimerization of b(deltaK100) and b(deltaK100-Q106); these two forms also were defective in F1 binding analyses. We conclude that defective dimerization of soluble b constructs severely affects F1 binding in vitro, yet allows assembly of ATP synthase in vivo. The highly uncoupled nature of enzymes with single-residue deletions in b indicates that the b subunit serves an active function in energy coupling rather than just holding on to the F1 sector. This function is proposed to depend on proper, specific interactions between the b subunits and F1.


Assuntos
ATPases Bacterianas Próton-Translocadoras/fisiologia , Escherichia coli/enzimologia , Mutação , Sequência de Aminoácidos , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/genética , Sequência de Bases , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
17.
J Biol Chem ; 281(7): 4126-31, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16352612

RESUMO

The gamma subunit of the ATP synthase F(1) sector rotates at the center of the alpha(3)beta(3) hexamer during ATP hydrolysis. A gold bead (40-200 nm diameter) was attached to the gamma subunit of Escherichia coli F(1), and then its ATP hydrolysis-dependent rotation was studied. The rotation speeds were variable, showing stochastic fluctuation. The high-speed rates of 40- and 60-nm beads were essentially similar: 721 and 671 rps (revolutions/s), respectively. The average rate of 60-nm beads was 381 rps, which is approximately 13-fold faster than that expected from the steady-state ATPase turnover number. These results indicate that the F(1) sector rotates much faster than expected from the bulk of ATPase activity, and that approximately 10% of the F(1) molecules are active on the millisecond time scale. Furthermore, the real ATP turnover number (number of ATP molecules converted to ADP and phosphate/s), as a single molecule, is variable during a short period. The epsilon subunit inhibited rotation and ATPase, whereas epsilon fused through its carboxyl terminus to cytochrome b(562) showed no effect. The epsilon subunit significantly increased the pausing time during rotation. Stochastic fluctuation of catalysis may be a general property of an enzyme, although its understanding requires combining studies of steady-state kinetics and single molecule observation.


Assuntos
Proteínas/fisiologia , ATPases Translocadoras de Prótons/química , Trifosfato de Adenosina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Rotação , Proteína Inibidora de ATPase
18.
J Biol Chem ; 281(1): 501-7, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16267041

RESUMO

The role of the C-domain of the epsilon subunit of ATP synthase was investigated by fusing either the 20-kDa flavodoxin (Fd) or the 5-kDa chitin binding domain (CBD) to the N termini of both full-length epsilon and a truncation mutant epsilon(88-stop). All mutant epsilon proteins were stable in cells and supported F1F0 assembly. Cells expressing the Fd-epsilon or Fd-epsilon(88-stop) mutants were unable to grow on acetate minimal medium, indicating their inability to carry out oxidative phosphorylation because of steric blockage of rotation. The other forms of epsilon supported growth on acetate. Membrane vesicles containing Fd-epsilon showed 23% of the wild type ATPase activity but no proton pumping, suggesting that the ATP synthase is intrinsically partially uncoupled. Vesicles containing CBD-epsilon were indistinguishable from the wild type in ATPase activity and proton pumping, indicating that the N-terminal fusions alone do not promote uncoupling. Fd-epsilon(88-stop) caused higher rates of uncoupled ATP hydrolysis than Fd-epsilon, and epsilon(88-stop) showed an increased rate of membrane-bound ATP hydrolysis but decreased proton pumping relative to the wild type. Both results demonstrate the role of the C-domain in coupling. Analysis of the wild type and epsilon(88-stop) mutant membrane ATPase activities at concentrations of ATP from 50 mum to 8 mm showed no significant dependence of the ratio of bound/released ATPase activity on ATP concentration. These results support the hypothesis that the main function of the C-domain in the Escherichia coli epsilon subunit is to reduce uncoupled ATPase activity, rather than to regulate coupled activity.


Assuntos
Metabolismo Energético/fisiologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Vesículas Citoplasmáticas/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólise , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
19.
J Biol Chem ; 277(19): 16782-90, 2002 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-11875079

RESUMO

The rotational mechanism of ATP synthase was investigated by fusing three proteins from Escherichia coli, the 12-kDa soluble cytochrome b(562), the 20-kDa flavodoxin, and the 28-kDa flavodoxin reductase, to the C terminus of the epsilon subunit of the enzyme. According to the concept of rotational catalysis, because epsilon is part of the rotor a large domain added at this site should sterically clash with the second stalk, blocking rotation and fully inhibiting the enzyme. E. coli cells expressing the cytochrome b(562) fusion in place of wild-type epsilon grew using acetate as the energy source, indicating their capacity for oxidative phosphorylation. Cells expressing the larger flavodoxin or flavodoxin reductase fusions failed to grow on acetate. Immunoblot analysis showed that the fusion proteins were stable in the cells and that they had no effect on enzyme assembly. These results provide initial evidence supporting rotational catalysis in vivo. In membrane vesicles, the cytochrome b(562) fusion caused an increase in the apparent ATPase activity but a minor decrease in proton pumping. Vesicles bearing ATP synthase containing the larger fusion proteins showed reduced but significant levels of ATPase activity that was sensitive to inhibition by dicyclohexylcarbodiimide (DCCD) but no proton pumping. Thus, all fusions to epsilon generated an uncoupled component of ATPase activity. These results imply that a function of the C terminus of epsilon in F(1)F(0) is to increase the efficiency of the enzyme by specifically preventing the uncoupled hydrolysis of ATP. Given the sensitivity to DCCD, this uncoupled ATP hydrolysis may arise from rotational steps of gammaepsilon in the inappropriate direction after ATP is bound at the catalytic site. It is proposed that the C-terminal domain of epsilon functions to ensure that rotation occurs only in the direction of ATP synthesis when ADP is bound and only in the direction of hydrolysis when ATP is bound.


Assuntos
Complexos de ATP Sintetase/química , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Western Blotting , Domínio Catalítico , Divisão Celular , Grupo dos Citocromos b/metabolismo , DNA/metabolismo , Dicicloexilcarbodi-Imida/farmacologia , Relação Dose-Resposta a Droga , Hidrólise , Immunoblotting , Modelos Biológicos , Mutagênese Sítio-Dirigida , Oxigênio/metabolismo , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Prótons , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...