Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Biol ; 90(1): 45-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24168161

RESUMO

PURPOSE: The meiotic recombination protein 11 (MRE11), radiation sensitive 50 (RAD50) and nibrin (NBN) are members of the MRE11/RAD50/NBN (MRN) complex which plays a fundamental role in the double-strand break damage response, including DNA damage sensing, signalling and repair after exposure to ionizing radiations. In addition the MRN complex is involved in the mechanisms regulating telomere length maintenance. Based on our previous results indicating that, in contrast to X-rays, high linear energy transfer (LET) radiations were able to elongate telomeres, we investigated the behavior of cells mutated in components of the MRN complex after exposure either to 62 MeV carbon-ions (50 keV/µm, at cell surface) or X-rays. MATERIALS AND METHODS: Epstein Barr Virus (EBV)-transformed lymphoblastoid cell lines (LCL) established from normal, heterozygous for the NBN gene, homozygous for either mutant/deleted NBN, RAD50 or ataxia telangiectasia mutated (ATM) genes were irradiated with 4 Gy, with telomere length being evaluated 24 h later or in time course-experiments up to 15 days later. The induction of telomeric sister chromatid exchanges (T-SCE) was measured as a hallmark of homologous directed recombinational repair. RESULTS: NBN and RAD50 mutated cells failed to elongate telomeres that instead occurred in the remaining cell lines as a response only to high-LET irradiation. Also, a kinetic study with 0.5-4 Gy up to 15 days from irradiation confirmed that NBN gene was indispensable for telomere elongation. Furthermore, such an elongation, was accompanied by an increased frequency of sister chromatid exchanges at telomeres (T-SCE). In contrast, the induction of genomic sister chromatid exchanges (G-SCE) occurred for carbon-ions irrespective of NBN gene status. CONCLUSIONS: We speculate that the MRN is necessary to process a subclass of high-LET radiation-induced complex DNA damage through a recombinational-repair mediated mechanism which in turn is responsible for telomere elongation.


Assuntos
Enzimas Reparadoras do DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Linfócitos/efeitos da radiação , Síndrome de Quebra de Nijmegen/patologia , Síndrome de Quebra de Nijmegen/fisiopatologia , Homeostase do Telômero/efeitos da radiação , Hidrolases Anidrido Ácido , Células Cultivadas , Dano ao DNA , Reparo do DNA/efeitos da radiação , Humanos , Proteína Homóloga a MRE11
2.
Oxid Med Cell Longev ; 2012: 498914, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829956

RESUMO

Following previous work, we investigated in more detail the relationship between apoptosis and delayed luminescence (DL) in human leukemia Jurkat T cells under a wide variety of treatments. We used menadione and hydrogen peroxide to induce oxidative stress and two flavonoids, quercetin, and epigallocatechin gallate, applied alone or in combination with menadione or H(2)O(2). 62 MeV proton beams were used to irradiate cells under a uniform dose of 2 or 10 Gy, respectively. We assessed apoptosis, cell cycle distributions, and DL. Menadione, H(2)O(2) and quercetin were potent inducers of apoptosis and DL inhibitors. Quercetin decreased clonogenic survival and the NAD(P)H level in a dose-dependent manner. Proton irradiation with 2 Gy but not 10 Gy increased the apoptotic rate. However, both doses induced a substantial G(2)/M arrest. Quercetin reduced apoptosis and prolonged the G(2)/M arrest induced by radiation. DL spectroscopy indicated that proton irradiation disrupted the electron flow within Complex I of the mitochondrial respiratory chain, thus explaining the massive necrosis induced by 10 Gy of protons and also suggested an equivalent action of menadione and quercetin at the level of the Fe/S center N2, which may be mediated by their binding to a common site within Complex I, probably the rotenone-binding site.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Flavonoides/farmacologia , Leucemia/patologia , Luminescência , Oxidantes/toxicidade , Prótons , Catequina/análogos & derivados , Catequina/farmacologia , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Humanos , Peróxido de Hidrogênio/toxicidade , Células Jurkat , Cinética , NADP/metabolismo , Teoria Quântica , Quercetina/farmacologia , Fatores de Tempo , Vitamina K 3/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...