Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroanat ; 16: 1057727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686573

RESUMO

Loss-of-function mutations in prokineticin 2 (PROK2) and the cognate receptor prokineticin receptor 2 (PROKR2) genes have been implicated in reproductive deficits characteristic of Kallmann Syndrome (KS). Knock out of Prokr2 gene produces the KS-like phenotype in mice resulting in impaired migration of gonadotropin releasing hormone (GnRH) neurons, olfactory bulb dysgenesis, and infertility. Beyond a developmental role, pharmacological and genetic studies have implicated PROKR2 in the control of the estrous cycle in mice. However, PROKR2 is expressed in several reproductive control sites but the brain nuclei associated with reproductive control in adult mice have not been defined. We set out to determine if ProkR2 neurons in both male and female mouse brains directly sense changes in the gonadal steroids milieu. We focused on estrogen receptor α (ERα) and androgen receptor (AR) due to their well-described function in reproductive control via actions in the brain. We found that the ProkR2-Cre neurons in the posterior nucleus of the amygdala have the highest colocalization with ERα and AR in a sex-specific manner. Few colocalization was found in the lateral septum and in the bed nucleus of the stria terminalis, and virtually no colocalization was observed in the medial amygdala. Our findings indicate that the posterior nucleus of the amygdala is the main site where PROKR2 neurons may regulate aspects of the reproductive function and social behavior in adult mice.

2.
J Exp Biol ; 222(Pt 20)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492818

RESUMO

Holometabolous insects have been able to radiate to vast ecological niches as adults through the evolution of adult-specific structures such as wings, antennae and eyes. These structures arise from imaginal discs that show regenerative capacity when damaged. During imaginal disc regeneration, development has been shown to be delayed in the fruit fly Drosophila melanogaster, but how conserved the delay-inducing mechanisms are across holometabolous insects has not been assessed. The goal of this research was to develop the hornworm Manduca sexta as an alternative model organism to study such damage-induced mechanisms, with the advantage of a larger hemolymph volume enabling access to the hormonal responses to imaginal disc damage. Upon whole-body X-ray exposure, we noted that the imaginal discs were selectively damaged, as assessed by TUNEL and Acridine Orange stains. Moreover, development was delayed, predominantly at the pupal-to-adult transition, with a concomitant delay in the prepupal ecdysteroid peak. The delays to eclosion were dose dependent, with some ability for repair of damaged tissues. We noted a shift in critical weight, as assessed by the point at which starvation no longer impacted developmental timing, without a change in growth rate, which was uncoupled from juvenile hormone clearance in the body. The developmental profile was different from that of D. melanogaster, which suggests species differences may exist in the mechanisms delaying development.


Assuntos
Discos Imaginais/patologia , Manduca/crescimento & desenvolvimento , Nicotiana/parasitologia , Animais , Peso Corporal/efeitos da radiação , Ecdisteroides/metabolismo , Cabeça , Discos Imaginais/efeitos da radiação , Hormônios Juvenis/metabolismo , Estágios do Ciclo de Vida/efeitos da radiação , Manduca/efeitos da radiação , Modelos Biológicos , Fatores de Tempo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...