Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocr Connect ; 7(3): R114-R125, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29555660

RESUMO

The experience in the field of islet transplantation shows that it is possible to replace ß cells in a patient with type 1 diabetes (T1D), but this cell therapy is limited by the scarcity of organ donors and by the danger associated to the immunosuppressive drugs. Stem cell therapy is becoming a concrete opportunity to treat various diseases. In particular, for a disease like T1D, caused by the loss of a single specific cell type that does not need to be transplanted back in its originating site to perform its function, a stem cell-based cell replacement therapy seems to be the ideal cure. New and infinite sources of ß cells are strongly required. In this review, we make an overview of the most promising and advanced ß cell production strategies. Particular hope is placed in pluripotent stem cells (PSC), both embryonic (ESC) and induced pluripotent stem cells (iPSC). The first phase 1/2 clinical trials with ESC-derived pancreatic progenitor cells are ongoing in the United States and Canada, but a successful strategy for the use of PSC in patients with diabetes has still to overcome several important hurdles. Another promising strategy of generation of new ß cells is the transdifferentiation of adult cells, both intra-pancreatic, such as alpha, exocrine and ductal cells or extra-pancreatic, in particular liver cells. Finally, new advances in gene editing technologies have given impetus to research on the production of human organs in chimeric animals and on in situ reprogramming of adult cells through in vivo target gene activation.

2.
Atherosclerosis ; 265: 162-171, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28892713

RESUMO

BACKGROUND AND AIMS: Saturated free fatty acids (SFAs) can induce lipotoxicity in different cells. No studies have investigated the effects of SFA in circulating angiogenic cells (CACs), which play a key role in endothelial repair processes. The aim of the study was to assess the effects of SFAs, specifically stearic acid (SA), on viability and function of CACs and to investigate potential underlying molecular mechanisms. METHODS: CACs were isolated from healthy subjects by established methods. CACs were incubated with BSA-complexed stearate (100 µM) to assess the time course (from 8 to 24 h exposure) of the effects on viability and apoptosis (activation of caspases 3/7), angiogenic function (tube formation assay), pro-inflammatory cytokine (IL-1ß, IL-6, IL-8, MCP-1 and TNFα) gene expression (qPCR) and secretion (ELISA), activation of MAPK (JNK, p38 and Erk1/2) by Western blot and endoplasmic reticulum (ER) stress marker (CHOP, BIP, ATF4, XBP-1 and sXBP-1) gene expression by qPCR. RESULTS: Stearic acid activates effector caspases in CACs in a dose- and time-dependent manner. SA also impairs CAC function and increases pro-inflammatory molecule (IL-1ß, IL-6, IL-8, MCP-1 and TNFα) gene expression and secretion in CACs starting from 3 h of incubation. The activation of JNK by SA mediates pro-inflammatory response, but it may be not necessary for apoptosis. Moreover, SA induces the expression of ER stress markers across the three branches of the ER stress response. CONCLUSIONS: In humans, both function and viability of CACs are exquisitely vulnerable to physiologic concentrations of stearate; lipotoxic impairment of endothelial repair processes may be implicated in vascular damage caused by SFAs.


Assuntos
Síndrome Metabólica/sangue , Monócitos/efeitos dos fármacos , Ácidos Esteáricos/efeitos adversos , Apoptose/efeitos dos fármacos , Células Cultivadas , Humanos , Inflamação/induzido quimicamente , Metabolismo dos Lipídeos , Síndrome Metabólica/metabolismo , Monócitos/fisiologia , Neovascularização Fisiológica , Ácidos Esteáricos/administração & dosagem
3.
J Biol Chem ; 292(36): 14977-14988, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28698383

RESUMO

Cytokine-induced endoplasmic reticulum (ER) stress is one of the molecular mechanisms underlying pancreatic ß-cell demise in type 1 diabetes. Thrombospondin 1 (THBS1) was recently shown to promote ß-cell survival during lipotoxic stress. Here we show that ER-localized THBS1 is cytoprotective to rat, mouse, and human ß-cells exposed to cytokines or thapsigargin-induced ER stress. THBS1 confers cytoprotection by maintaining expression of mesencephalic astrocyte-derived neutrotrophic factor (MANF) in ß-cells and thereby prevents the BH3-only protein BIM (BCL2-interacting mediator of cell death)-dependent triggering of the mitochondrial pathway of apoptosis. Prolonged exposure of ß-cells to cytokines or thapsigargin leads to THBS1 and MANF degradation and loss of this prosurvival mechanism. Approaches that sustain intracellular THBS1 and MANF expression in ß-cells should be explored as a cytoprotective strategy in type 1 diabetes.


Assuntos
Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Crescimento Neural/metabolismo , Trombospondina 1/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Fatores de Crescimento Neural/antagonistas & inibidores , Estresse Oxidativo , Tapsigargina/farmacologia
4.
Cardiovasc Diabetol ; 16(1): 27, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28231835

RESUMO

BACKGROUND: Fewer circulating endothelial progenitor cells (EPCs) and increased plasma (C-term) stromal cell-derived factor 1α (SDF-1α), a substrate of DPP-4, are biomarkers, and perhaps mediators, of cardiovascular risk and mortality. Short-term/acute treatment with DPP-4 inhibitors improve EPC bioavailability; however, long-term effects of DPP-4i on EPCs bioavailability/plasma (C-term) SDF-1α are unknown. METHODS: Randomized (2:1) open-label trial to compare the effects of vildagliptin (V) (100 mg/day) vs glibenclamide (G) (2.5 mg bid to a maximal dose of 5 mg bid) on circulating EPC levels at 4 and 12 months of treatment in 64 patients with type 2 diabetes in metformin failure. At baseline, and after 4 and 12 months, main clinical/biohumoral parameters, inflammatory biomarkers, concomitant therapies, EPC number (CD34+/CD133+/KDR+/106 cytometric events) and plasma (C-term) SDF-1α (R&D system) were assessed. RESULTS: Baseline characteristics were comparable in the two groups. V and G similarly and significantly (p < 0.0001) improved glucose control. At 12 months, V significantly increased EPC number (p < 0.05) and significantly reduced (C-term) SDF-1α plasma levels (p < 0.01) compared to G, with no differences in inflammatory biomarkers. CONCLUSIONS: V exerts a long-term favorable effect on EPC and (C-term) SDF-1α levels at glucose equipoise, thereby implying a putative beneficial effect on vascular integrity. Trial registration Clinical Trials number: NCT01822548; name: Effect of Vildagliptin vs. Glibenclamide on Circulating Endothelial Progenitor Cell Number Type 2 Diabetes. Registered 28 March, 2013.


Assuntos
Adamantano/análogos & derivados , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Células Progenitoras Endoteliais/efeitos dos fármacos , Glibureto/uso terapêutico , Hipoglicemiantes/uso terapêutico , Nitrilas/uso terapêutico , Pirrolidinas/uso terapêutico , Adamantano/farmacologia , Adamantano/uso terapêutico , Idoso , Contagem de Células/métodos , Quimiocina CXCL12/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Células Progenitoras Endoteliais/fisiologia , Feminino , Seguimentos , Glibureto/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Masculino , Pessoa de Meia-Idade , Nitrilas/farmacologia , Pirrolidinas/farmacologia , Fatores de Tempo , Vildagliptina
5.
Cell Death Differ ; 23(12): 1995-2006, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27588705

RESUMO

The failure of ß-cells has a central role in the pathogenesis of type 2 diabetes, and the identification of novel approaches to improve functional ß-cell mass is essential to prevent/revert the disease. Here we show a critical novel role for thrombospondin 1 (THBS1) in ß-cell survival during lipotoxic stress in rat, mouse and human models. THBS1 acts from within the endoplasmic reticulum to activate PERK and NRF2 and induce a protective antioxidant defense response against palmitate. Prolonged palmitate exposure causes THBS1 degradation, oxidative stress, activation of JNK and upregulation of PUMA, culminating in ß-cell death. These findings shed light on the mechanisms leading to ß-cell failure during metabolic stress and point to THBS1 as an interesting therapeutic target to prevent oxidative stress in type 2 diabetes.


Assuntos
Citoproteção/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Lipídeos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trombospondina 1/metabolismo , eIF-2 Quinase/metabolismo , Animais , Antioxidantes/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/toxicidade , Proteólise/efeitos dos fármacos , Ratos Wistar
6.
Molecules ; 21(8)2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27490528

RESUMO

The consumption of foodstuffs yielding circulating compounds able to maintain endothelial function by improving nitric oxide (NO) bioavailability can be considered as an effective strategy for cardiovascular disease prevention. This work assessed the in vitro effects of urolithin A, urolithin B, and urolithin B-glucuronide, ellagitannin-derived metabolites of colonic origin, on NO release and endothelial NO synthase (eNOS) activation in primary human aortic endothelial cells (HAECs). Urolithins were tested both individually at 15 µM and as a mixture of 5 µM each, at different time points. The biotransformation of these molecules in cell media due to cell metabolism was also evaluated by UHPLC-MS(n). The mix of urolithins at 5 µM significantly increased nitrite/nitrate levels following 24 h of incubation, while single urolithins at 15 µM did not modify NO bioavailability. Both the mix of urolithins at 5 µM and urolithin B-glucuronide at 15 µM activated eNOS expression. All urolithins underwent metabolic reactions, but these were limited to conjugation with sulfate moieties. This study represents a step forward in the understanding of cardiovascular health benefits of ellagitannin-rich foodstuffs and backs the idea that peripheral cells may contribute to urolithin metabolism.


Assuntos
Aorta/citologia , Cumarínicos/farmacologia , Células Endoteliais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Trato Gastrointestinal/metabolismo , Glucuronídeos/química , Glucuronídeos/farmacologia , Humanos , Taninos Hidrolisáveis/química
7.
PLoS One ; 10(3): e0119310, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803285

RESUMO

BACKGROUND AND AIM: Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs) and cardiovascular (CV) risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs), which take part in vascular endothelium repair/replacement. METHODS: CACs were isolated from healthy donors' buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 µg/ml) to test the effects of NP ­ characterized by Transmission Electron Microscopy ­ on CAC viability, apoptosis (caspase 3/7 activation), function (fibronectin adhesion assay), oxidative stress and inflammatory cytokine gene expression. RESULTS: Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested), which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01). Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01) and increased caspase activity (p<0.01), lipid peroxidation end-products (p<0.05) and pro-inflammatory cytokine gene expression (p<0.05 or lower). Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower) and Co3O4 (p<0.01) NPs. CONCLUSIONS: In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only) and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs). Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans.


Assuntos
Apoptose/efeitos dos fármacos , Cobalto/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Óxidos/farmacologia , Titânio/farmacologia , Cobalto/química , Cobalto/toxicidade , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/citologia , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Microscopia Eletrônica de Transmissão , Óxidos/química , Óxidos/toxicidade , Cultura Primária de Células , Titânio/química , Titânio/toxicidade
8.
Food Funct ; 5(8): 1881-90, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24942553

RESUMO

BACKGROUND AND AIMS: Recent data suggest that n-3 PUFA exert beneficial effects on endothelial progenitor cell (EPC) biology. We sought to investigate whether these effects might be mediated by enhanced EPC in vitro function and/or in vivo bioavailability. METHODS AND RESULTS: CACs and late-outgrowth EPCs were isolated from peripheral blood mononuclear cells obtained from 12 donor buffy-coats. The effect of n-3 PUFA (EPA:DHA = 0.9:1.5; 9 µM EPA plus 15 µM DHA) was tested on CAC/EPC viability, function (tube-formation) and pro-inflammatory molecule expression. Circulating EPC (cells positive for CD34, CD133 and kinase insert domain receptor - KDR cell-surface antigens by flow cytometry) number was evaluated in 20 healthy subjects (10 F/10 M, 32 ± 5 years), randomized to receive 4 mackerel or sardine portions per week for 6 weeks followed by a 6 week free-diet period. N-3 PUFA improved CAC and late-outgrowth EPC viability (p < 0.05) and the capacity to form tube-like structures in CACs (+38%; p < 0.05) and late-outgrowth EPCs (+15%; p < 0.05). ICAM-1 expression was reduced in both CACs (p < 0.05) and late-outgrowth EPCs (p < 0.05) and VCAM-1 in late-outgrowth EPCs (p < 0.005). N-3 PUFA significantly decreased TNF-α and MCP-1 expression in CACs and IL-8, TNF-α and MCP-1 in late-outgrowth EPCs (p < 0.05). Circulating EPC number significantly improved after 6 weeks of a fish-enriched diet (p < 0.01) and returned to baseline levels after a 6 week free-diet period (p < 0.01). Plasma EPA levels were independently and positively associated with EPC levels (p < 0.005). CONCLUSION: Our findings support the case of a beneficiary role played by n-3 PUFA in EPC function and bioavailability.


Assuntos
Ácidos Docosa-Hexaenoicos/sangue , Ácido Eicosapentaenoico/sangue , Células Progenitoras Endoteliais/efeitos dos fármacos , Adulto , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Células Progenitoras Endoteliais/metabolismo , Feminino , Peixes , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Alimentos Marinhos , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
PLoS One ; 7(11): e48283, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139771

RESUMO

BACKGROUND: Evidence suggests that the PPARγ-agonist insulin sensitizer pioglitazone, may provide potential beneficial cardiovascular (CV) effects beyond its anti-hyperglycaemic function. A reduced endothelial progenitor cell (EPC) number is associated with impaired glucose tolerance (IGT) or diabetes, conditions characterised by increased CV risk. AIM: To evaluate whether pioglitazone can provide benefit in vitro in EPCs obtained from IGT subjects. MATERIALS AND METHODS: Early and late-outgrowth EPCs were obtained from peripheral blood mononuclear cells of 14 IGT subjects. The in vitro effect of pioglitazone (10 µM) with/without PPARγ-antagonist GW9662 (1 µM) was assessed on EPC viability, apoptosis, ability to form tubular-like structures and pro-inflammatory molecule expression. RESULTS: Pioglitazone increased early and late-outgrowth EPC viability, with negligible effects on apoptosis. The capacity of EPCs to form tubular-like structures was improved by pioglitazone in early (mean increase 28%; p=0.005) and late-outgrowth (mean increase 30%; p=0.037) EPCs. Pioglitazone reduced ICAM-1 and VCAM-1 adhesion molecule expression in both early (p=0.001 and p=0.012 respectively) and late-outgrowth (p=0.047 and p=0.048, respectively) EPCs. Similarly, pioglitazone reduced TNFα gene and protein expression in both early (p=0.034;p=0.022) and late-outgrowth (p=0.026;p=0.017) EPCs compared to control. These effects were prevented by incubation with the PPARγ-antagonist GW9662. CONCLUSION: Pioglitazone exerts beneficial effects in vitro on EPCs isolated from IGT subjects, supporting the potential implication of pioglitazone as a CV protective agents.


Assuntos
Células Endoteliais/patologia , Intolerância à Glucose/patologia , Intolerância à Glucose/fisiopatologia , Células-Tronco/patologia , Tiazolidinedionas/farmacologia , Apoptose/efeitos dos fármacos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/genética , Quimiocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/genética , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/genética , NF-kappa B/metabolismo , Pioglitazona , Células-Tronco/efeitos dos fármacos , Tiazolidinedionas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...