Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 248, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832964

RESUMO

Contractile actomyosin bundles play crucial roles in various physiological processes, including cell migration, morphogenesis, and muscle contraction. The intricate assembly of actomyosin bundles involves the precise alignment and fusion of myosin II filaments, yet the underlying mechanisms and factors involved in these processes remain elusive. Our study reveals that LUZP1 plays a central role in orchestrating the maturation of thick actomyosin bundles. Loss of LUZP1 caused abnormal cell morphogenesis, migration, and the ability to exert forces on the environment. Importantly, knockout of LUZP1 results in significant defects in the concatenation and persistent association of myosin II filaments, severely impairing the assembly of myosin II stacks. The disruption of these processes in LUZP1 knockout cells provides mechanistic insights into the defective assembly of thick ventral stress fibers and the associated cellular contractility abnormalities. Overall, these results significantly contribute to our understanding of the molecular mechanism involved in actomyosin bundle formation and highlight the essential role of LUZP1 in this process.


Assuntos
Actomiosina , Movimento Celular , Contração Muscular , Miosina Tipo II , Actomiosina/metabolismo , Humanos , Contração Muscular/fisiologia , Miosina Tipo II/metabolismo , Miosina Tipo II/genética , Animais , Citoesqueleto de Actina/metabolismo , Camundongos
2.
Nat Commun ; 13(1): 6032, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229430

RESUMO

Contractile actomyosin bundles are key force-producing and mechanosensing elements in muscle and non-muscle tissues. Whereas the organization of muscle myofibrils and mechanism regulating their contractility are relatively well-established, the principles by which myosin-II activity and force-balance are regulated in non-muscle cells have remained elusive. We show that Caldesmon, an important component of smooth muscle and non-muscle cell actomyosin bundles, is an elongated protein that functions as a dynamic cross-linker between myosin-II and tropomyosin-actin filaments. Depletion of Caldesmon results in aberrant lateral movement of myosin-II filaments along actin bundles, leading to irregular myosin distribution within stress fibers. This manifests as defects in stress fiber network organization and contractility, and accompanied problems in cell morphogenesis, migration, invasion, and mechanosensing. These results identify Caldesmon as critical factor that ensures regular myosin-II spacing within non-muscle cell actomyosin bundles, and reveal how stress fiber networks are controlled through dynamic cross-linking of tropomyosin-actin and myosin filaments.


Assuntos
Fibras de Estresse , Tropomiosina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Músculo Liso/metabolismo , Miosina Tipo II/metabolismo , Miosinas/metabolismo , Fibras de Estresse/metabolismo , Tropomiosina/metabolismo
3.
Ann N Y Acad Sci ; 1518(1): 120-130, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285711

RESUMO

The evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed of electrically excitable neuronal networks connected by chemical synapses and nonexcitable glial cells that provide for homeostasis and defense. The evolution of neuroglia began with the emergence of the centralized nervous system and proceeded through a continuous increase in their complexity. In the primate brain, especially in the brain of humans, the astrocyte lineage is exceedingly complex, with the emergence of new types of astroglial cells possibly involved in interlayer communication and integration.


Assuntos
Astrócitos , Neuroglia , Humanos , Animais , Neuroglia/fisiologia , Astrócitos/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Encéfalo/fisiologia , Oligodendroglia/fisiologia
4.
Sci Rep ; 8(1): 17670, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518778

RESUMO

Contractile actomyosin bundles, stress fibers, contribute to morphogenesis, migration, and mechanosensing of non-muscle cells. In addition to actin and non-muscle myosin II (NMII), stress fibers contain a large array of proteins that control their assembly, turnover, and contractility. Calponin-3 (Cnn3) is an actin-binding protein that associates with stress fibers. However, whether Cnn3 promotes stress fiber assembly, or serves as either a positive or negative regulator of their contractility has remained obscure. Here, we applied U2OS osteosarcoma cells as a model system to study the function of Cnn3. We show that Cnn3 localizes to both NMII-containing contractile ventral stress fibers and transverse arcs, as well as to non-contractile dorsal stress fibers that do not contain NMII. Fluorescence-recovery-after-photobleaching experiments revealed that Cnn3 is a dynamic component of stress fibers. Importantly, CRISPR/Cas9 knockout and RNAi knockdown studies demonstrated that Cnn3 is not essential for stress fiber assembly. However, Cnn3 depletion resulted in increased and uncoordinated contractility of stress fibers that often led to breakage of individual actomyosin bundles within the stress fiber network. Collectively these results provide evidence that Cnn3 is dispensable for the assembly of actomyosin bundles, but that it is required for controlling proper contractility of the stress fiber network.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fibras de Estresse/metabolismo , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Recuperação de Fluorescência Após Fotodegradação , Inativação Gênica , Humanos , Imageamento Tridimensional , Proteínas dos Microfilamentos/análise , Proteínas dos Microfilamentos/genética , Imagem Óptica , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fibras de Estresse/genética , Fibras de Estresse/ultraestrutura , Calponinas
5.
Cell Rep ; 24(1): 11-19, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972773

RESUMO

Stress fibers are contractile actomyosin bundles that guide cell adhesion, migration, and morphogenesis. Their assembly and alignment are under precise mechanosensitive control. Thus, stress fiber networks undergo rapid modification in response to changes in biophysical properties of the cell's surroundings. Stress fiber maturation requires mechanosensitive activation of 5'AMP-activated protein kinase (AMPK), which phosphorylates vasodilator-stimulated phosphoprotein (VASP) to inhibit actin polymerization at focal adhesions. Here, we identify Ca2+-calmodulin-dependent kinase kinase 2 (CaMKK2) as a critical upstream factor controlling mechanosensitive AMPK activation. CaMKK2 and Ca2+ influxes were enriched around focal adhesions at the ends of contractile stress fibers. Inhibition of either CaMKK2 or mechanosensitive Ca2+ channels led to defects in phosphorylation of AMPK and VASP, resulting in a loss of contractile bundles and a decrease in cell-exerted forces. These data provide evidence that Ca2+, CaMKK2, AMPK, and VASP form a mechanosensitive signaling cascade at focal adhesions that is critical for stress fiber assembly.


Assuntos
Actinas/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Mecanotransdução Celular , Fibras de Estresse/metabolismo , Actomiosina/metabolismo , Adenilato Quinase/metabolismo , Fenômenos Biomecânicos , Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Adesões Focais/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Fosfoproteínas/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...