Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 8: 607080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330510

RESUMO

O-GlcNAcylation is a post-translational modification of proteins that controls a variety of cellular processes, is chronically elevated in diabetes mellitus, and may contribute to the progression of diabetic complications, including diabetic nephropathy. Our previous work showed that increases in the O-GlcNAcylation of cellular proteins impair the homeostatic reaction of the regulatory volume decrease (RVD) after cell swelling by an unknown mechanism. The activation of the swelling-induced chloride current IClswell is a key step in RVD, and ICln, a ubiquitous protein involved in the activation of IClswell, is O-GlcNAcylated. Here, we show that experimentally increased O-GlcNAcylation of cellular proteins inhibited the endogenous as well as the ICln-induced IClswell current and prevented RVD in a human renal cell line, while decreases in O-GlcNAcylation augmented the current magnitude. In parallel, increases or decreases in O-GlcNAcylation, respectively, weakened or stabilized the binding of ICln to the intracellular domain of α-integrin, a process that is essential for the activation of IClswell. Mutation of the putative YinOYang site at Ser67 rendered the ICln-induced IClswell current unresponsive to O-GlcNAc variations, and the ICln interaction with α-integrin insensitive to O-GlcNAcylation. In addition, exposure of cells to a hypotonic solution reduced the O-GlcNAcylation of cellular proteins. Together, these findings show that O-GlcNAcylation affects RVD by influencing IClswell and further indicate that hypotonicity may activate IClswell by reducing the O-GlcNAcylation of ICln at Ser67, therefore permitting its binding to α-integrin. We propose that disturbances in the regulation of cellular volume may contribute to disease in settings of chronically elevated O-GlcNAcylation, including diabetic nephropathy.

3.
Sci Rep ; 9(1): 12195, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434921

RESUMO

IClswell is the chloride current induced by cell swelling, and plays a fundamental role in several biological processes, including the regulatory volume decrease (RVD). ICln is a highly conserved, ubiquitously expressed and multifunctional protein involved in the activation of IClswell. In platelets, ICln binds to the intracellular domain of the integrin αIIb chain, however, whether the ICln/integrin interaction plays a role in RVD is not known. Here we show that a direct molecular interaction between ICln and the integrin α-chain is not restricted to platelets and involves highly conserved amino acid motifs. Integrin α recruits ICln to the plasma membrane, thereby facilitating the activation of IClswell during hypotonicity. Perturbation of the ICln/integrin interaction prevents the transposition of ICln towards the cell surface and, in parallel, impedes the activation of IClswell. We suggest that the ICln/integrin interaction interface may represent a new molecular target enabling specific IClswell suppression in pathological conditions when this current is deregulated or plays a detrimental role.


Assuntos
Plaquetas/metabolismo , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Cadeias alfa de Integrinas/metabolismo , Animais , Membrana Celular/genética , Canais de Cloreto/genética , Cães , Células HEK293 , Humanos , Cadeias alfa de Integrinas/genética , Transporte de Íons , Células Madin Darby de Rim Canino
4.
Cell Physiol Biochem ; 45(3): 867-882, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29421809

RESUMO

BACKGROUND/AIMS: In the human genome, more than 400 genes encode ion channels, which are ubiquitously expressed and often coexist and participate in almost all physiological processes. Therefore, ion channel blockers represent fundamental tools in discriminating the contribution of individual channel types to a physiological phenomenon. However, unspecific effects of these compounds may represent a confounding factor. Three commonly used chloride channel inhibitors, i.e. 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS), 5-nitro-2-[(3-phenylpropyl) amino]benzoic acid (NPPB) and the anti-inflammatory drug niflumic acid were tested to identify the lowest concentration effective on Cl- channels and ineffective on K+ channels. METHODS: The activity of the above mentioned compounds was tested by whole cell patch-clamp on the swelling-activated Cl- current ICl,swell and on the endogenous voltage-dependent, outwardly rectifying K+ selective current in human kidney cell lines (HEK 293/HEK 293 Phoenix). RESULTS: Micromolar (1-10 µM) concentrations of DIDS and NPPB could not discriminate between the Cl- and K+ selective currents. Specifically, 1 µM DIDS only affected the K+ current and 10 µM NPPB equally affected the Cl- and K+ currents. Only relatively high (0.1-1 mM) concentrations of DIDS and prolonged (5 minutes) exposure to 0.1-1 mM NPPB preferentially suppressed the Cl- current. Niflumic acid preferentially inhibited the Cl- current, but also significantly affected the K+ current. The endogenous voltage-dependent, outwardly rectifying K+ selective current in HEK 293/HEK 293 Phoenix cells was shown to arise from the Kv 3.1 channel, which is extensively expressed in brain and is involved in neurological diseases. CONCLUSION: The results of the present study underscore that sensitivity of a given physiological phenomenon to the Cl- channel inhibitors NPPB, DIDS and niflumic acid may actually arise from an inhibition of Cl- channels but can also result from an inhibition of voltage-dependent K+ channels, including the Kv 3.1 channel. The use of niflumic acid as anti-inflammatory drug in patients with concomitant Kv 3.1 dysfunction may result contraindicated.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Canal de Potássio Kv1.3/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Potássio/metabolismo , Animais , Cloretos/metabolismo , Células Epiteliais/citologia , Células HEK293 , Humanos , Túbulos Renais Proximais/citologia , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Camundongos , Células NIH 3T3 , Ácido Niflúmico/química , Ácido Niflúmico/farmacologia , Nitrobenzoatos/química , Nitrobenzoatos/farmacologia , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo
5.
Cell Physiol Biochem ; 43(6): 2297-2309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073588

RESUMO

BACKGROUND/AIM: Accurate genotyping of CYP2D6 is challenging due to its inherent genetic variation, copy number variation (duplications and deletions) and hybrid formation with highly homologous pseudogenes. Because a relatively high percentage (∼25%) of clinically prescribed drugs are substrates for this enzyme, accurate determination of its genotype for phenotype prediction is essential. METHODS: A cohort of 365 patient samples was genotyped for CYP2D6 using Sanger sequencing (as the gold standard), hydrolysis probe assays or pyrosequencing. RESULTS: A discrepant result between the three genotyping methods for the loss of function CYP2D6*3 (g.2549delA, rs35742686) genetic variant was found in one of the samples. This sample also contained the CYP2D6 g.2470T>C (rs17002852) variation, which had an allele frequency of 2.47% in our cohort. Redesign of the CYP2D6*3 pyrosequencing and hydrolysis probe assays to avoid CYP2D6 g.2470 corrected the anomaly. CONCLUSION: To evidence allele drop out and increase the accuracy of genotyping, intra-patient validation of the same genetic variation with at least two separate methods should be considered.


Assuntos
Citocromo P-450 CYP2D6/genética , Variações do Número de Cópias de DNA , Técnicas de Genotipagem/métodos , Alelos , Estudos de Coortes , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Análise Discriminante , Frequência do Gene , Genótipo , Haplótipos , Humanos , Fenótipo , Análise de Sequência de DNA
6.
Cell Physiol Biochem ; 41(4): 1491-1502, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28365704

RESUMO

Pendrin is upregulated in bronchial epithelial cells following IL-4 stimulation via binding of STAT6 to an N4 GAS motif. Basal CpG methylation of the pendrin promoter is cell-specific. We studied if a correlation exists between IL-4 sensitivity and the CpG methylation status of the pendrin promoter in human bronchial epithelial cell models. METHODS: Real-time PCR and pyrosequencing were used to respectively quantify pendrin mRNA levels and methylation of pendrin promoter, with and without IL-4 stimulation, in healthy and diseased primary HBE cells, as well as NCI-H292 cells. RESULTS: Increases in pendrin mRNA after IL-4 stimulation was more robust in NCI-H292 cells than in primary cells. The amount of gDNA methylated varied greatly between the cell types. In particular, CpG site 90 located near the N4 GAS motif was highly methylated in the primary cells. An additional CpG site (90bis), created by a SNP, was found only in the primary cells. IL-4 stimulation resulted in dramatic demethylation of CpG sites 90 and 90bis in the primary cells. CONCLUSIONS: IL-4 induces demethylation of specific CpG sites within the pendrin promoter. These epigenetic alterations are cell type specific, and may in part dictate pendrin mRNA transcription.


Assuntos
Brônquios/metabolismo , Ilhas de CpG , Metilação de DNA , Células Epiteliais/metabolismo , Interleucina-4/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Elementos de Resposta , Brônquios/citologia , Linhagem Celular , Epigênese Genética , Células Epiteliais/citologia , Feminino , Humanos , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese , Transportadores de Sulfato
7.
PLoS One ; 9(10): e108826, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295618

RESUMO

To optimise the efficiency of cell machinery, cells can use the same protein (often called a hub protein) to participate in different cell functions by simply changing its target molecules. There are large data sets describing protein-protein interactions ("interactome") but they frequently fail to consider the functional significance of the interactions themselves. We studied the interaction between two potential hub proteins, ICln and 4.1R (in the form of its two splicing variants 4.1R80 and 4.1R135), which are involved in such crucial cell functions as proliferation, RNA processing, cytoskeleton organisation and volume regulation. The sub-cellular localisation and role of native and chimeric 4.1R over-expressed proteins in human embryonic kidney (HEK) 293 cells were examined. ICln interacts with both 4.1R80 and 4.1R135 and its over-expression displaces 4.1R from the membrane regions, thus affecting 4.1R interaction with ß-actin. It was found that 4.1R80 and 4.1R135 are differently involved in regulating the swelling activated anion current (ICl,swell) upon hypotonic shock, a condition under which both isoforms are dislocated from the membrane region and thus contribute to ICl,swell current regulation. Both 4.1R isoforms are also differently involved in regulating cell morphology, and ICln counteracts their effects. The findings of this study confirm that 4.1R plays a role in cell volume regulation and cell morphology and indicate that ICln is a new negative regulator of 4.1R functions.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas ELAV/metabolismo , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Linhagem Celular , Citoesqueleto/metabolismo , Proteína Semelhante a ELAV 2 , Células HEK293 , Humanos , Ligação Proteica
8.
Cell Physiol Biochem ; 32(7): 129-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24429820

RESUMO

BACKGROUND: Cigarette smoke extract (CSE), a model for studying the effects of tobacco smoke in vivo and in vitro, induces cell oxidative stress and affects the antioxidative glutathione system. We evaluated the impact of CSE on airway epithelial cells and the possible cytoprotective effect of the mucolitic drug S-carboximethilcysteine lysine salt (S-CMC-Lys). METHODS: Reduced glutathione (GSH) and reactive oxygen species (ROS) intracellular levels were evaluated by fluorimetry in human bronchial epithelial cells (16-HBE) and the expression and activity of enzymes of the GSH metabolic pathway were investigated by RT-PCR, Western blot and colorimetric assays. RESULTS: CSE significantly increased cell mortality in a time and dose dependent manner, via an apoptosis-independent pathway. Short-term (3 hours) CSE exposure induced an increase in ROS levels and a GSH intracellular concentration drop. In parallel, the expression of glutathione peroxidases 2 and 3, glutathione reductase and glutamate-cysteine-ligase was increased. S-CMC-Lys was effective in counteracting these effects. CONCLUSION: CSE affects ROS levels, GSH concentration and GSH enzymes pathway. These effects can be to some extent reversed by S-CMC-Lys, that could represent a therapeutic tool to counteract CSE induced oxidative cellular injuries.


Assuntos
Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glutationa/metabolismo , Fumar/efeitos adversos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Homeostase/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
PLoS One ; 7(12): e52014, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284854

RESUMO

The CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) activity and localization are influenced by the cytoskeleton, in particular by actin and its polymerization state. In this study we investigated whether the expression of the hypertensive mutations of α-adducin (G460W-S586C in humans, F316Y in rats), an actin capping protein, led to a functional modification of CFTR activity and surface expression. The experiments were performed on HEK293 T cells cotransfected with CFTR and the human wild type (WT) or G460W mutated α-adducin. In whole-cell patch-clamp experiments, both the CFTR chloride current and the slope of current activation after forskolin addition were significantly higher in HEK cells overexpressing the G460W adducin. A higher plasma membrane density of active CFTR channels was confirmed by cell-attached patch-clamp experiments, both in HEK cells and in cultured primary DCT cells, isolated from MHS (Milan Hypertensive Strain, a Wistar rat (Rattus norvegicus) hypertensive model carrying the F316Y adducin mutation), compared to MNS (Milan Normotensive Strain) rats. Western blot experiments demonstrated an increase of the plasma membrane CFTR protein expression, with a modification of the channel glycosylation state, in the presence of the mutated adducin. A higher retention of CFTR protein in the plasma membrane was confirmed both by FRAP (Fluorescence Recovery After Photobleaching) and photoactivation experiments. The present data indicate that in HEK cells and in isolated DCT cells the presence of the G460W-S586C hypertensive variant of adducin increases CFTR channel activity, possibly by altering its membrane turnover and inducing a retention of the channel in the plasmamembrane. Since CFTR is known to modulate the activity of many others transport systems, the increased surface expression of the channel could have consequences on the whole network of transport in kidney cells.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Mutação , Animais , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Células HEK293 , Humanos , Masculino , Técnicas de Patch-Clamp , Ligação Proteica , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...