Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1169: 27-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24957226

RESUMO

RIG-I is a key pattern recognition receptor that recognizes cytoplasmic viral RNA. Upon ligand binding, it undergoes a conformational change that induces an active signaling conformation. However, the details of this conformational change remain elusive until high-resolution crystal structures of different functional conformations are available. X-ray crystallography is a powerful tool to study structure-function relationships, but crystallization is often the limiting step of the method. Here, we describe the in situ in-drop proteolysis of RIG-I that yielded crystals of the ATPase domain of mouse RIG-I suitable for structure determination.


Assuntos
RNA Helicases DEAD-box/química , Animais , Cristalização , Cristalografia por Raios X , RNA Helicases DEAD-box/metabolismo , Imunidade Inata , Camundongos , Conformação Proteica , Proteólise , RNA Viral/química
2.
Nature ; 498(7454): 332-7, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23722159

RESUMO

Cytosolic DNA arising from intracellular bacterial or viral infections is a powerful pathogen-associated molecular pattern (PAMP) that leads to innate immune host defence by the production of type I interferon and inflammatory cytokines. Recognition of cytosolic DNA by the recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces the production of cGAMP to activate the stimulator of interferon genes (STING). Here we report the crystal structure of cGAS alone and in complex with DNA, ATP and GTP along with functional studies. Our results explain the broad DNA sensing specificity of cGAS, show how cGAS catalyses dinucleotide formation and indicate activation by a DNA-induced structural switch. cGAS possesses a remarkable structural similarity to the antiviral cytosolic double-stranded RNA sensor 2'-5'oligoadenylate synthase (OAS1), but contains a unique zinc thumb that recognizes B-form double-stranded DNA. Our results mechanistically unify dsRNA and dsDNA innate immune sensing by OAS1 and cGAS nucleotidyl transferases.


Assuntos
Citosol , DNA/metabolismo , Nucleotidiltransferases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X , DNA/química , DNA/farmacologia , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Modelos Moleculares , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Conformação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Especificidade por Substrato , Suínos , Uridina Trifosfato/química , Uridina Trifosfato/metabolismo , Zinco/química , Zinco/metabolismo
3.
EMBO J ; 31(21): 4153-64, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23064150

RESUMO

Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill-defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG-I, MDA5 and STING thereby triggering interferon ß production. Secreted Listeria nucleic acids also caused RIG-I-dependent IL-1ß-production and inflammasome activation. The signalling molecule CARD9 contributed to IL-1ß production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG-I provides a mechanistic explanation for efficient induction of immunity by live bacteria.


Assuntos
Citoplasma/metabolismo , RNA Helicases DEAD-box/fisiologia , DNA Bacteriano/imunologia , Imunidade Celular/imunologia , Inflamação/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , RNA Bacteriano/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Proteínas Adaptadoras de Sinalização CARD , Células Cultivadas , Citoplasma/imunologia , Citoplasma/microbiologia , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Bacteriano/genética , Citometria de Fluxo , Imunofluorescência , Inflamação/microbiologia , Helicase IFIH1 Induzida por Interferon , Listeria monocytogenes/genética , Listeriose/genética , Listeriose/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Bacteriano/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
4.
EMBO Rep ; 12(11): 1127-34, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21979817

RESUMO

RIG-I detects cytosolic viral dsRNA with 5' triphosphates (5'-ppp-dsRNA), thereby initiating an antiviral innate immune response. Here we report the crystal structure of superfamily 2 (SF2) ATPase domain of RIG-I in complex with a nucleotide analogue. RIG-I SF2 comprises two RecA-like domains 1A and 2A and a helical insertion domain 2B, which together form a 'C'-shaped structure. Domains 1A and 2A are maintained in a 'signal-off' state with an inactive ATP hydrolysis site by an intriguing helical arm. By mutational analysis, we show surface motifs that are critical for dsRNA-stimulated ATPase activity, indicating that dsRNA induces a structural movement that brings domains 1A and 2A/B together to form an active ATPase site. The structure also indicates that the regulatory domain is close to the end of the helical arm, where it is well positioned to recruit 5'-ppp-dsRNA to the SF2 domain. Overall, our results indicate that the activation of RIG-I occurs through an RNA- and ATP-driven structural switch in the SF2 domain.


Assuntos
Trifosfato de Adenosina/metabolismo , Antivirais/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Transdução de Sinais , Adenilil Imidodifosfato/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada/genética , Cristalografia por Raios X , Proteína DEAD-box 58 , Análise Mutacional de DNA , Ativação Enzimática , Humanos , Hidrólise , Camundongos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA/metabolismo , Receptores Imunológicos , Soluções , Relação Estrutura-Atividade
5.
Genes Dev ; 24(9): 957-71, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20439434

RESUMO

The spindle checkpoint generates a "wait anaphase" signal at unattached kinetochores to prevent premature anaphase onset. Kinetochore-localized dynein is thought to silence the checkpoint by transporting checkpoint proteins from microtubule-attached kinetochores to spindle poles. Throughout metazoans, dynein recruitment to kinetochores requires the protein Spindly. Here, we identify a conserved motif in Spindly that is essential for kinetochore targeting of dynein. Spindly motif mutants, expressed following depletion of endogenous Spindly, target normally to kinetochores but prevent dynein recruitment. Spindly depletion and Spindly motif mutants, despite their similar effects on kinetochore dynein, have opposite consequences on chromosome alignment and checkpoint silencing. Spindly depletion delays chromosome alignment, but Spindly motif mutants ameliorate this defect, indicating that Spindly has a dynein recruitment-independent role in alignment. In Spindly depletions, the checkpoint is silenced following delayed alignment by a kinetochore dynein-independent mechanism. In contrast, Spindly motif mutants are retained on microtubule-attached kinetochores along with checkpoint proteins, resulting in persistent checkpoint signaling. Thus, dynein-mediated removal of Spindly from microtubule-attached kinetochores, rather than poleward transport per se, is the critical reaction in checkpoint silencing. In the absence of Spindly, a second mechanism silences the checkpoint; this mechanism is likely evolutionarily ancient, as fungi and higher plants lack kinetochore dynein.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Inativação Gênica/fisiologia , Genes cdc/fisiologia , Cinetocoros/metabolismo , Mutação Puntual/genética , Motivos de Aminoácidos/genética , Proteínas de Ciclo Celular , Cromossomos/genética , Complexo Dinactina , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico/fisiologia
6.
Structure ; 18(5): 616-26, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20462495

RESUMO

The RZZ complex recruits dynein to kinetochores. We investigated structure, topology, and interactions of the RZZ subunits (ROD, ZWILCH, and ZW10) in vitro, in vivo, and in silico. We identify neuroblastoma-amplified gene (NAG), a ZW10 binder, as a ROD homolog. ROD and NAG contain an N-terminal beta propeller followed by an alpha solenoid, which is the architecture of certain nucleoporins and vesicle coat subunits, suggesting a distant evolutionary relationship. ZW10 binding to ROD and NAG is mutually exclusive. The resulting ZW10 complexes (RZZ and NRZ) respectively contain ZWILCH and RINT1 as additional subunits. The X-ray structure of ZWILCH, the first for an RZZ subunit, reveals a novel fold distinct from RINT1's. The evolutionarily conserved NRZ likely acts as a tethering complex for retrograde trafficking of COPI vesicles from the Golgi to the endoplasmic reticulum. The RZZ, limited to metazoans, probably evolved from the NRZ, exploiting the dynein-binding capacity of ZW10 to direct dynein to kinetochores.


Assuntos
Cinetocoros/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dineínas/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico/genética , Raios X
7.
Genes Dev ; 22(17): 2302-7, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18765786

RESUMO

The attachment of chromosomes to spindle microtubules during mitosis is a delicate and intricate process on which eukaryotic cells critically depend to maintain their ploidy. In this issue of Genes & Development, Gassmann and colleagues (pp. 2385-2399 present an analysis of the recently discovered Spindly/SPDL-1 protein that casts new lights onto the attachment process and the way it relates to the control of cell cycle progression.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Dineínas/fisiologia , Cinetocoros/fisiologia , Microtúbulos/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Segregação de Cromossomos/fisiologia , Ligação Proteica , Fuso Acromático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...