Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(3): 549-554, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29295919

RESUMO

Atmospheric nitrogen (N) deposition is an important determinant of N availability for natural ecosystems worldwide. Increased anthropogenic N deposition shifts the stoichiometric equilibrium of ecosystems, with direct and indirect impacts on ecosystem functioning and biogeochemical cycles. Current simulation data suggest that remote tropical forests still receive low atmospheric N deposition due to a lack of proximate industry, low rates of fossil fuel combustion, and absence of intensive agriculture. We present field-based N deposition data for forests of the central Congo Basin, and use ultrahigh-resolution mass spectrometry to characterize the organic N fraction. Additionally, we use satellite data and modeling for atmospheric N source apportionment. Our results indicate that these forests receive 18.2 kg N hectare-1 years-1 as wet deposition, with dry deposition via canopy interception adding considerably to this flux. We also show that roughly half of the N deposition is organic, which is often ignored in N deposition measurements and simulations. The source of atmospheric N is predominantly derived from intensive seasonal burning of biomass on the continent. This high N deposition has important implications for the ecology of the Congo Basin and for global biogeochemical cycles more broadly.


Assuntos
Ar/análise , Nitrogênio/análise , Árvores/metabolismo , Congo , Florestas , Espectrometria de Massas , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...