Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 10(7): e993293, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098229

RESUMO

De novo meristem formation in tissue culture critically depends on the correct organization of hormonal domains, which is followed by expression shoot meristem pattern genes. The genetic basis of plant regeneration is fragmentary, but mutant studies demonstrate that signaling through MONOPTEROS (MP)/AUXIN RESPONSE FACTOR 5 is necessary for the formation of shoots from Arabidopsis calli. Most strikingly, variants of MP, uncoupling MP activity from negative regulation by Aux/IAA proteins, showed that MP is also sufficient for promoting de novo shoot formation even from normally recalcitrant tissues. In this function MP acts through pathways involving the homeobox transcription factor SHOOT MERISTEMLESS (STM) and AP2 domain transcription factor CYTOKININ RESPONSE FACTOR2 (CRF2). Our findings provide an entry point to better address the molecular genetics underlying divergent regeneration properties and demonstrate the potential of ARF-derived constructs as novel genetic tools to develop high frequency regeneration systems in recalcitrant explants and species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regeneração , Fatores de Transcrição/metabolismo , Ácidos Indolacéticos/metabolismo , Mutação , Organogênese , Transdução de Sinais , Técnicas de Cultura de Tecidos
2.
New Phytol ; 204(3): 556-566, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25274430

RESUMO

In vitro regeneration of complete organisms from diverse cell types is a spectacular property of plant cells. Despite the great importance of plant regeneration for plant breeding and biotechnology, its molecular basis is still largely unclear and many important crop plants have remained recalcitrant to regeneration. Hormone-exposure protocols to trigger the de novo formation of either roots or shoots from callus tissue demonstrate the importance of auxin and cytokinin signaling pathways, and genetic differences in these pathways may contribute to the highly divergent responsiveness of plant species to regeneration protocols. In this study, we show that signaling through MONOPTEROS (MP)/AUXIN RESPONSE FACTOR 5 is necessary for the formation of shoots from Arabidopsis calli. Most strikingly, an irrepressible variant of MP, MPΔ, is sufficient for promoting de novo shoot formation through pathways involving the genetically downstream functions of SHOOT MERISTEMLESS (STM) and CYTOKININ RESPONSE FACTOR2 (CRF2). We conclude that the MPΔ genotype can promote de novo shoot formation and can be used to probe corresponding signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células-Tronco , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética
3.
New Phytol ; 204(3): 474-483, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25145395

RESUMO

The regulatory interactions between AUXIN RESPONSE FACTORS (ARFs) and Aux/IAA repressors play a central role in auxin signal transduction. Yet, the systems properties of this regulatory network are not well established. We generated a steroid-inducible ARF5/MONOPTEROS (MP) transgenic background to survey the involvement of this factor in the transcriptional regulation of the entire Aux/IAA family in Arabidopsis thaliana. Target genes of ARF5/MP identified by this approach were confirmed by chromatin immunoprecipitation, in vitro gel retardation assays and gene expression analyses. Our study shows that ARF5/MP is indispensable for the correct regulation of nearly one-half of all Aux/IAA genes, and that these targets coincide with distinct subclades. Further, genetic analyses demonstrate that the protein products of multiple Aux/IAA targets negatively feed back onto ARF5/MP activity. This work indicates that ARF5/MP broadly influences the expression of the Aux/IAA gene family, and suggests that such regulation involves the activation of specific subsets of redundantly functioning factors. These groups of factors may then act together to control various processes within the plant through negative feedback on ARF5. Similar detailed analyses of other Aux/IAA-ARF regulatory modules will be required to fully understand how auxin signal transduction influences virtually every aspect of plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Dexametasona/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Plantas Geneticamente Modificadas , Plântula/crescimento & desenvolvimento , Fatores de Transcrição/genética
4.
Plant Signal Behav ; 7(8): 1027-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22827953

RESUMO

The molecularly well-characterized auxin signal transduction pathway involves two evolutionarily conserved families interacting through their C-terminal domains III and IV: the Auxin Response Factors (ARFs) and their repressors the Aux/IAAs, to control auxin-responsive genes, among them genes involved in auxin transport. ( 1) (,) ( 2) We have developed a new genetic tool to study ARF function. Using MONOPTEROS (MP)/ARF5, we have generated a truncated version of MP (MPΔ), ( 3) which has lost the target domains for repression by Aux/IAA proteins. Besides exploring genetic interactions between MP and Aux/IAAs, we used this construct to trace MP's role in vascular patterning, a previously characterized auxin dependent process. ( 4) (,) ( 5) Here we summarize examples of naturally occurring truncated ARFs and summarize potential applications of truncated ARFs as analytical tools.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Evolução Molecular , Dados de Sequência Molecular , Proteínas de Plantas/química , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/metabolismo , Deleção de Sequência
5.
PLoS Pathog ; 8(2): e1002523, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22319451

RESUMO

The eukaryotic cytoskeleton is essential for structural support and intracellular transport, and is therefore a common target of animal pathogens. However, no phytopathogenic effector has yet been demonstrated to specifically target the plant cytoskeleton. Here we show that the Pseudomonas syringae type III secreted effector HopZ1a interacts with tubulin and polymerized microtubules. We demonstrate that HopZ1a is an acetyltransferase activated by the eukaryotic co-factor phytic acid. Activated HopZ1a acetylates itself and tubulin. The conserved autoacetylation site of the YopJ / HopZ superfamily, K289, plays a critical role in both the avirulence and virulence function of HopZ1a. Furthermore, HopZ1a requires its acetyltransferase activity to cause a dramatic decrease in Arabidopsis thaliana microtubule networks, disrupt the plant secretory pathway and suppress cell wall-mediated defense. Together, this study supports the hypothesis that HopZ1a promotes virulence through cytoskeletal and secretory disruption.


Assuntos
Acetiltransferases/metabolismo , Arabidopsis/microbiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Pseudomonas syringae/patogenicidade , Acetilação , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Ácido Fítico/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/enzimologia , Pseudomonas syringae/genética , Tubulina (Proteína)/metabolismo
6.
New Phytol ; 194(2): 391-401, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22320407

RESUMO

Combinatorial interactions of AUXIN RESPONSE FACTORs (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins through their common domains III and IV regulate auxin responses, but insight into the functions of individual proteins is still limited. As a new tool to explore this regulatory network, we generated a gain-of-function ARF genotype by eliminating domains III and IV from the functionally well-characterized ARF MONOPTEROS(MP)/ARF5. This truncated version of MP, termed MPΔ, conferred complementing MP activity, but also displayed a number of semi-dominant traits affecting auxin signaling and organ patterning. In MPΔ, the expression levels of many auxin-inducible genes, as well as rooting properties and vascular tissue abundance, were enhanced. Lateral organs were narrow, pointed and filled with parallel veins. This effect was epistatic over the vascular hypotrophy imposed by certain Aux/IAA mutations. Further, in MPΔ leaves, failure to turn off the procambium-selecting gene PIN1 led to the early establishment of oversized central procambial domains and very limited subsequent lateral growth of the leaf lamina. We conclude that MPΔ can selectively uncouple a single ARF from regulation by Aux/IAA proteins and can be used as a genetic tool to probe auxin pathways and explore leaf development.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Padronização Corporal , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ácidos Indolacéticos/metabolismo , Folhas de Planta/embriologia , Feixe Vascular de Plantas/embriologia , Deleção de Sequência/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Fenótipo , Folhas de Planta/anatomia & histologia , Estrutura Terciária de Proteína , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Transgenes/genética
7.
Mol Plant ; 4(5): 794-804, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21772029

RESUMO

Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants, fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types, to monitor dynamic cell fate selection processes, and to obtain cell type-specific transcriptomes. Fluorescent tagging enabled visualization in living tissues and the precise recordings of dynamic expression pattern changes. The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms. In developmental studies, the use of fluorescent proteins has become critical, where morphological markers of tissues, cell types, or differentiation stages are either not known or not easily recognizable. In this review, we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.


Assuntos
Proteínas Luminescentes/análise , Células Vegetais/química , Estruturas Vegetais/química , Plantas/química , Biomarcadores/química , Biomarcadores/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Células Vegetais/metabolismo , Desenvolvimento Vegetal , Estruturas Vegetais/genética , Estruturas Vegetais/metabolismo , Plantas/genética , Plantas/metabolismo
8.
Plant Sci ; 181(2): 96-104, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21683873

RESUMO

Genes expressed in vascular tissues have been identified by several strategies, usually with a focus on mature vascular cells. In this study, we explored the possibility of using two opposite types of altered tissue compositions in combination with a double-filter selection to identify genes with a high probability of vascular expression in early organ primordia. Specifically, we generated full-transcriptome microarray profiles of plants with (a) genetically strongly reduced and (b) pharmacologically vastly increased vascular tissues and identified a reproducible cohort of 158 transcripts that fulfilled the dual requirement of being underrepresented in (a) and overrepresented in (b). In order to assess the predictive value of our identification scheme for vascular gene expression, we determined the expression patterns of genes in two unbiased subsamples. First, we assessed the expression patterns of all twenty annotated transcription factor genes from the cohort of 158 genes and found that seventeen of the twenty genes were preferentially expressed in leaf vascular cells. Remarkably, fifteen of these seventeen vascular genes were clearly expressed already very early in leaf vein development. Twelve genes with published leaf expression patterns served as a second subsample to monitor the representation of vascular genes in our cohort. Of those twelve genes, eleven were preferentially expressed in leaf vascular tissues. Based on these results we propose that our compendium of 158 genes represents a sample that is highly enriched for genes expressed in vascular tissues and that our approach is particularly suited to detect genes expressed in vascular cell lineages at early stages of their inception.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , DNA Complementar/genética , Regulação para Baixo , Expressão Gênica , Ácidos Indolacéticos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA Complementar/genética , RNA de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma , Regulação para Cima
9.
Plant Cell Physiol ; 50(1): 141-50, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19068493

RESUMO

Cell type-specific fluorescent gene expression markers are a prerequisite for various strategies in functional genomics and developmental biology. To increase the resolution of vascular tissue analysis and to identify more genes expressed in the vasculature, we searched for expression in vascular tissues within a new collection of transactivated enhancer trap lines. Among 33 lines with vascular expression, we identified five lines with expression profiles marking procambial or procambium-associated cell states. In stem cross-sections we identified one line with phloem- and four with xylem-specific expression, as well as nine lines with expression in both phloem and xylem and two with cambial expression. For all lines, we also report the expression patterns in different organs and developmental stages. Special features of expression patterns include a line with auxin-dependent expression domains. We determined the flanking sequences of 21 enhancer trap insertions, 16 of which are found in, or in close proximity to, annotated genes and thus may reflect the expression patterns of natural promoters. Finally, we analyzed the loss-of-function phenotypes of 14 putatively affected genes. Remarkably, mutations in a gene encoding a putative F-box protein were associated with an auxin-hypersensitive hypocotyl elongation response. Our compendium provides a diverse selection of markers for different vascular cell states, which can be used for targeted gene expression, cell type-specific transcript profiling and gene function assignment in the plant vascular system.


Assuntos
Arabidopsis/genética , Genes de Plantas , Floema/metabolismo , Xilema/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , DNA Bacteriano/genética , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Reporter , Mutagênese Insercional , Floema/genética , Xilema/genética
10.
Plant J ; 54(3): 522-31, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18248597

RESUMO

The study of plant pathogenesis and the development of effective treatments to protect plants from diseases could be greatly facilitated by a high-throughput pathosystem to evaluate small-molecule libraries for inhibitors of pathogen virulence. The interaction between the Gram-negative bacterium Pseudomonas syringae and Arabidopsis thaliana is a model for plant pathogenesis. However, a robust high-throughput assay to score the outcome of this interaction is currently lacking. We demonstrate that Arabidopsis seedlings incubated with P. syringae in liquid culture display a macroscopically visible 'bleaching' symptom within 5 days of infection. Bleaching is associated with a loss of chlorophyll from cotyledonary tissues, and is correlated with bacterial virulence. Gene-for-gene resistance is absent in the liquid environment, possibly because of the suppression of the hypersensitive response under these conditions. Importantly, bleaching can be prevented by treating seedlings with known inducers of plant defence, such as salicylic acid (SA) or a basal defence-inducing peptide of bacterial flagellin (flg22) prior to inoculation. Based on these observations, we have devised a high-throughput liquid assay using standard 96-well plates to investigate the P. syringae-Arabidopsis interaction. An initial screen of small molecules active on Arabidopsis revealed a family of sulfanilamide compounds that afford protection against the bleaching symptom. The most active compound, sulfamethoxazole, also reduced in planta bacterial growth when applied to mature soil-grown plants. The whole-organism liquid assay provides a novel approach to probe chemical libraries in a high-throughput manner for compounds that reduce bacterial virulence in plants.


Assuntos
Arabidopsis/metabolismo , Pseudomonas syringae/crescimento & desenvolvimento , Plântula/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Imunidade Inata/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Plântula/genética , Plântula/microbiologia , Sulfametoxazol/metabolismo , Sulfanilamida , Sulfanilamidas/metabolismo , Virulência
11.
Development ; 131(5): 1089-100, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14973283

RESUMO

Transcription factors of the auxin response factor (ARF) family have been implicated in auxin-dependent gene regulation, but little is known about the functions of individual ARFs in plants. Here, interaction assays, expression studies and combinations of multiple loss- and gain-of-function mutants were used to assess the roles of two ARFs, NONPHOTOTROPIC HYPOCOTYL 4 (NPH4/ARF7) and MONOPTEROS (MP/ARF5), in Arabidopsis development. Both MP and NPH4 interact strongly and selectively with themselves and with each other, and are expressed in vastly overlapping domains. We show that the regulatory properties of both genes are far more related than suggested by their single mutant phenotypes. NPH4 and MP are capable of controlling both axis formation in the embryo and auxin-dependent cell expansion. Interaction of MP and NPH4 in Arabidopsis plants is indicated by their joint requirement in a number of auxin responses and by synergistic effects associated with the co-overexpression of both genes. Finally, we demonstrate antagonistic interaction between ARF and Aux/IAA gene functions in Arabidopsis development. Overexpression of MP suppresses numerous defects associated with a gain-of-function mutation in BODENLOS (BDL)/IAA12. Together these results provide evidence for the biological relevance of ARF-ARF and ARF-Aux/IAA interaction in Arabidopsis plants and demonstrate that an individual ARF can act in both invariantly programmed pattern formation as well as in conditional responses to external signals.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Padronização Corporal , DNA de Plantas/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Hibridização In Situ , Ácidos Indolacéticos/fisiologia , Mutação , Fenótipo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
12.
Plant Physiol ; 131(3): 1327-39, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12644682

RESUMO

A number of observations have implicated auxin in the formation of vascular tissues in plant organs. These include vascular strand formation in response to local auxin application, the effects of impaired auxin transport on vascular patterns and suggestive phenotypes of Arabidopsis auxin response mutants. In this study, we have used molecular markers to visualize auxin response patterns in developing Arabidopsis leaves as well as Arabidopsis mutants and transgenic plants to trace pathways of auxin signal transduction controlling the expression of early procambial genes. We show that in young Arabidopsis leaf primordia, molecular auxin response patterns presage sites of procambial differentiation. This is the case not only in normal development but also upon experimental manipulation of auxin transport suggesting that local auxin signals are instrumental in patterning Arabidopsis leaf vasculature. We further found that the activity of the Arabidopsis gene MONOPTEROS, which is required for proper vascular differentiation, is also essential in a spectrum of auxin responses, which include the regulation of rapidly auxin-inducible AUX/IAA genes, and discovered the tissue-specific vascular expression profile of the class I homeodomain-leucine zipper gene, AtHB20. Interestingly, MONOPTEROS activity is a limiting factor in the expression of AtHB8 and AtHB20, two genes encoding transcriptional regulators expressed early in procambial development. Our observations connect general auxin signaling with early controls of vascular differentiation and suggest molecular mechanisms for auxin signaling in patterned cell differentiation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA , Ácidos Indolacéticos/farmacologia , Folhas de Planta/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Polaridade Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...