Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34577266

RESUMO

Force sensing has always been an important necessity in making decisions for manipulation. It becomes more appealing in the micro-scale context, especially where the surface forces become predominant. In addition, the deformations happening at the very local level are often coupled, and therefore providing multi-axis force sensing capabilities to microgripper becomes an important necessity. The manufacturing of a multi-axis instrumented microgripper comprises several levels of complexity, especially when it comes to the single wafer fabrication of a sensing and actuation mechanism. To address these requirements, in this work, an instrumented two-axis force sensing tool is proposed, which can then be integrated with the appropriate actuators for microgripping. Indeed, based on the task, the gripper design and shape requirements may differ. To cover wide needs, a versatile manufacturing strategy comprising of the separate fabrication of the passive and sensing parts was especially investigated. At the microscale, signal processing brings additional challenges, especially when we are dealing with multi-axis sensing. Therefore, a proper device, with efficient and appropriate systems and signal processing integration, is highly important. To keep these requirements in consideration, a dedicated clean-room based micro-fabrication of the devices and corresponding electronics to effectively process the signals are presented in this work. The fabricated sensing part can be assembled with wide varieties of passive parts to have different sensing tools as well as grippers. This force sensing tool is based upon the piezoresistive principle, and is experimentally demonstrated with a sensing capability up to 9 mN along the two axes with a resolution of 20 µN. The experimental results validate the measurement error within 1%. This work explains the system design, its working principle, FEM analysis, its fabrication and assembly, followed by the experimental validation of its performance. Moreover, the use of the proposed sensing tool for an instrumented gripper was also discussed and demonstrated with a micrograsping and release task.


Assuntos
Eletrônica , Fenômenos Mecânicos , Fenômenos Físicos , Processamento de Sinais Assistido por Computador
2.
Adv Mater ; 33(45): e2103371, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34554607

RESUMO

4D structures are tridimensional structures with time-varying abilities that provide high versatility, sophisticated designs, and a broad spectrum of actuation and sensing possibilities. The downsizing of these structures below 100 µm opens up exceptional opportunities for many disciplines, including photonics, acoustics, medicine, and nanorobotics. However, it requires a paradigm shift in manufacturing methods, especially for dynamic structures. A novel fabrication method based on ion-induced folding of planar multilayer structures embedding their actuation is proposed-the planar structures are fabricated in bulk through batch microfabrication techniques. Programmable and accurate bidirectional foldings (-70° - +90°) of Silica/Chromium/Aluminium (SiO2 /Cr/Al) multilayer structures are modeled, experimentally demonstrated then applied to embedded electrothermal actuation of controllable and dynamic 4D nanorobotic structures. The method is used to produce high-performances case-study grippers for nanorobotic applications in confined environments. Once folded, a gripping task at the nano-scale is demonstrated. The proposed fabrication method is suitable for creating small-scale 4D systems for nanorobotics, medical devices, and tunable metamaterials, where rapid folding and enhanced dynamic control are required.


Assuntos
Nanoestruturas/química , Robótica , Alumínio/química , Cromo/química , Desenho de Equipamento , Dióxido de Silício/química
3.
Front Robot AI ; 8: 706070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277721

RESUMO

Parallel Continuum Robots (PCR) have several advantages over classical articulated robots, notably a large workspace, miniaturization capabilities and safe human-robot interactions. However, their low accuracy is still a serious drawback. Indeed, several conditions have to be met for PCR to reach a high accuracy, namely: a repeatable mechanical structure, a correct kinematic model, and a proper estimation of the model's parameters. In this article, we propose a methodology that allows reaching a micrometer accuracy with a PCR. This approach emphasizes the importance of using a repeatable continuum mechanism, identifying the most influential parameters of an accurate kinematic model of the robot and precisely measuring them. The experimental results show that the proposed approach allows to reach an accuracy of 3.3 µm in position and 0.5 mrad in orientation over a 10 mm long circular path. These results push the current limits of PCR accuracy and make them good potential candidates for high accuracy automatic positioning tasks.

4.
Front Robot AI ; 6: 122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501137

RESUMO

For the last two decades, the development of conducting polymers (CP) as artificial muscles, by materials researchers and chemists, has made establishing a reliable and repeatable synthesis of such materials possible. CP-based milli-robots were mostly unknown in soft robotics, however, today, they play a vital role in robotics and smart materials forums. Indeed, this subclass of soft robots has reached a crucial moment in their history, a moment where they can display rather interesting features, based on established foundations in terms of modeling, control, sensing, and planning in various applications. The purpose of this paper is to present the potential of conductive polymer-based soft milli-robots as high-performance devices for vacuum applications. To that end, a trilayer polypyrrole-based actuator was first used inside a scanning electron microscope (SEM), characterized for different applied voltages, over a relatively long period. Additionally, the tip positioning of the cantilever was also controlled using a closed-loop control. Furthermore, as a proof of concept for more complex soft milli-robots, an S-shaped soft milli-robot was modeled, using a hybrid model comprised of two models; a multi-physics model and a kinematic model. It was then fabricated using laser machining and finally characterized using its tip displacement. polypyrrole-based soft milli-robots proved to have tremendous potential as high-performance soft robots at the microscale for a wide range of applications, including SEM micro-manipulation as well as biomedical applications.

5.
Sensors (Basel) ; 14(3): 5056-73, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24625736

RESUMO

This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...