Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 11(1): 85, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226256

RESUMO

The multifaceted nature of neuroinflammation is highlighted by its ability to both aggravate and promote neuronal health. While in mammals retinal ganglion cells (RGCs) are unable to regenerate following injury, acute inflammation can induce axonal regrowth. However, the nature of the cells, cellular states and signalling pathways that drive this inflammation-induced regeneration have remained elusive. Here, we investigated the functional significance of macrophages during RGC de- and regeneration, by characterizing the inflammatory cascade evoked by optic nerve crush (ONC) injury, with or without local inflammatory stimulation in the vitreous. By combining single-cell RNA sequencing and fate mapping approaches, we elucidated the response of retinal microglia and recruited monocyte-derived macrophages (MDMs) to RGC injury. Importantly, inflammatory stimulation recruited large numbers of MDMs to the retina, which exhibited long-term engraftment and promoted axonal regrowth. Ligand-receptor analysis highlighted a subset of recruited macrophages that exhibited expression of pro-regenerative secreted factors, which were able to promote axon regrowth via paracrine signalling. Our work reveals how inflammation may promote CNS regeneration by modulating innate immune responses, providing a rationale for macrophage-centred strategies for driving neuronal repair following injury and disease.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Animais , Retina , Células Ganglionares da Retina , Macrófagos , Inflamação , Mamíferos
2.
Artigo em Inglês | MEDLINE | ID: mdl-36914161

RESUMO

BACKGROUND: We aimed to evaluate the impact of membranous interventricular septum (MIS) length and calcifications of the native aortic valve (AV), via preoperative multidetector computed tomography (MDCT) scan, on postoperative atrioventricular block III (AVB/AVB III) and permanent pacemaker implantation in surgical aortic valve replacement (SAVR). METHODS: We retrospectively analyzed preoperative contrast-enhanced MDCT scans and procedural outcomes of patients affected by AV stenosis who underwent SAVR at our center (June 2016-December 2019). The study population was divided into two groups (AVB and non-AVB), and variables were compared with a Mann-Whitney's U-test or chi-square test. Data were further analyzed using point biserial correlation and logistic regression. RESULTS: A total of 155 (38% female) patients (mean age of 71.2 ± 6 years) were enrolled in our study: conventional stented bioprosthesis (N = 99) and sutureless prosthesis (N = 56) were implanted. A postoperative AVB III was observed in 11 patients (7.1%). AVB patients had significant greater calcifications in left coronary cusp (LCC) -AV (non-AVB = 181.0 mm3 [82.7-316.9] vs. AVB = 424.8 mm3 [115.9-563.2], p = 0.044), LCC left ventricular outflow tract (LVOT) (non-AVB = 2.1 mm3 [0-20.1] vs. AVB = 26.0 mm3 [0.1-138.0], p = 0.048), right coronary cusp (RCC) -LVOT (non-AVB = 0 mm3 [0-3.5] vs. AVB = 2.8 mm3 [0-29.0], p = 0.039), and consequently in total LVOT (non-AVB = 2.1 mm3 [0-20.1] vs. AVB = 26.0 mm3 [0.1-138.0], p = 0.02), while their MIS was significantly shorter than in non-AVB patients (non-AVB = 11.3 mm [9.9-13.4] vs. AVB = 9.44 mm [6.98-10.5]; p=0.014)). Partially, these group differences correlated positively (LCC -AV, r = 0.201, p = 0.012; RCC -LVOT, r = 0.283, p ≤ 0.001) or negatively (MIS length, r = -0.202, p = 0.008) with new-onset AVB III. CONCLUSION: We recommend including an MDCT in preoperative diagnostic testing for all patients undergoing surgical AVR for further risk stratification.

3.
Cells ; 11(17)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36078097

RESUMO

How many RBPMS+ retinal ganglion cells (RGCs) does a standard C57BL/6 laboratory mouse have on average and is this number substrain- or sex-dependent? Do RGCs of (European) C57BL/6J and -N mice show a different intrinsic vulnerability upon glaucomatous injury? Global RGC numbers and densities of common laboratory mice were previously determined via axon counts, retrograde tracing or BRN3A immunohistochemistry. Here, we report the global RGC number and density by exploiting the freely available tool RGCode to automatically count RGC numbers and densities on entire retinal wholemounts immunostained for the pan-RGC marker RBPMS. The intrinsic vulnerability of RGCs from different substrains to glaucomatous injury was evaluated upon introduction of the microbead occlusion model, followed by RBPMS counts, retrograde tracing and electroretinography five weeks post-injury. We demonstrate that the global RGC number and density varies between substrains, yet is not sex-dependent. C57BL/6J mice have on average 46K ± 2K RBPMS+ RGCs per retina, representing a global RGC density of 3268 ± 177 RGCs/mm2. C57BL/6N mice, on the other hand, have on average less RBPMS+ RGCs (41K ± 3K RGCs) and a lower density (3018 ± 189 RGCs/mm2). The vulnerability of the RGC population of the two C57BL/6 substrains to glaucomatous injury did, however, not differ in any of the interrogated parameters.


Assuntos
Glaucoma , Células Ganglionares da Retina , Animais , Contagem de Células , Camundongos , Camundongos Endogâmicos C57BL , Retina
4.
Cells ; 11(11)2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35681479

RESUMO

One important facet of glaucoma pathophysiology is axonal damage, which ultimately disrupts the connection between the retina and its postsynaptic brain targets. The concurrent loss of retrograde support interferes with the functionality and survival of the retinal ganglion cells (RGCs). Previous research has shown that stimulation of neuronal activity in a primary retinal target area-i.e., the superior colliculus-promotes RGC survival in an acute mouse model of glaucoma. To build further on this observation, we applied repeated chemogenetics in the superior colliculus of a more chronic murine glaucoma model-i.e., the microbead occlusion model-and performed bulk RNA sequencing on collicular lysates and isolated RGCs. Our study revealed that chronic target stimulation upon glaucomatous injury phenocopies the a priori expected molecular response: growth factors were pinpointed as essential transcriptional regulators both in the locally stimulated tissue and in distant, unstimulated RGCs. Strikingly, and although the RGC transcriptome revealed a partial reversal of the glaucomatous signature and an enrichment of pro-survival signaling pathways, functional rescue of injured RGCs was not achieved. By postulating various explanations for the lack of RGC neuroprotection, we aim to warrant researchers and drug developers for the complexity of chronic neuromodulation and growth factor signaling.


Assuntos
Glaucoma , Colículos Superiores , Animais , Modelos Animais de Doenças , Glaucoma/metabolismo , Camundongos , Retina/metabolismo , Células Ganglionares da Retina/metabolismo
5.
J Geriatr Cardiol ; 19(3): 167-176, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35464642

RESUMO

OBJECTIVES: To assess the impact of prosthesis choice and aortic valve calcifications on the occurrence of conduction disturbances after transcatheter aortic valve implantation (TAVI). METHODS: We retrospectively analyzed the preoperative clinical characteristics, electrocardiograms, contrast-enhanced multidetector computed tomography scans and procedural strategies of patients who underwent TAVI in our center between January 2012 and June 2017. Quantification of calcium volume was performed for each aortic cusp above (aortic valve) and below (left ventricular outflow tract, LVOT) the basal plane. Multivariate analysis was performed to evaluate risk factors for the onset of new bundle branch block (BBB), transient and permanent atrioventricular block (tAVB, pAVB). RESULTS: A total of 569 patients were included in the study. Six different prostheses were implanted (Edwards Sapien XT, n = 162; Edwards Sapien 3, n = 240; Medtronic CoreValve, n = 27; Medtronic CoreValve Evolut R, n = 21; Symetis Acurate, n = 56; Symetis Acurate neo, n = 63). The logistic regression analysis for BBB showed association with baseline left anterior hemiblock. The logistic regression for tAVB, found the prior valvuloplasty and the balloon post-dilatation associated with the outcome. Baseline left and right BBB, degree of oversizing, and LVOT calcification beneath the non-coronary cusp were associated with pAVB. Neither the prosthesis model, nor the use of a self-expandable prosthesis showed statistical significance with the above-mentioned outcomes on univariate analysis. CONCLUSIONS: LVOT calcification beneath the non-coronary cusp, baseline left anterior hemiblock, right BBB, balloon post-dilatation, prior valvuloplasty and oversizing are independently associated with postprocedural conduction disturbances after TAVI. Use of a self-expandable prosthesis may show a lower incidence of AVB, if applied in lower calcified aortic valves.

6.
Cells ; 11(7)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35406674

RESUMO

The chronic character of chemogenetics has been put forward as one of the assets of the technique, particularly in comparison to optogenetics. Yet, the vast majority of chemogenetic studies have focused on acute applications, while repeated, long-term neuromodulation has only been booming in the past few years. Unfortunately, together with the rising number of studies, various hurdles have also been uncovered, especially in relation to its chronic application. It becomes increasingly clear that chronic neuromodulation warrants caution and that the effects of acute neuromodulation cannot be extrapolated towards chronic experiments. Deciphering the underlying cellular and molecular causes of these discrepancies could truly unlock the chronic chemogenetic toolbox and possibly even pave the way for chemogenetics towards clinical application. Indeed, we are only scratching the surface of what is possible with chemogenetic research. For example, most investigations are concentrated on behavioral read-outs, whereas dissecting the underlying molecular signature after (chronic) neuromodulation could reveal novel insights in terms of basic neuroscience and deregulated neural circuits. In this review, we highlight the hurdles associated with the use of chemogenetic experiments, as well as the unexplored research questions for which chemogenetics offers the ideal research platform, with a particular focus on its long-term application.


Assuntos
Optogenética , Optogenética/métodos
7.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359839

RESUMO

Neuroinflammation has been put forward as a mechanism triggering axonal regrowth in the mammalian central nervous system (CNS), yet little is known about the underlying cellular and molecular players connecting these two processes. In this study, we provide evidence that MMP2 is an essential factor linking inflammation to axonal regeneration by using an in vivo mouse model of inflammation-induced axonal regeneration in the optic nerve. We show that infiltrating myeloid cells abundantly express MMP2 and that MMP2 deficiency results in reduced long-distance axonal regeneration. However, this phenotype can be rescued by restoring MMP2 expression in myeloid cells via a heterologous bone marrow transplantation. Furthermore, while MMP2 deficiency does not affect the number of infiltrating myeloid cells, it does determine the coordinated expression of pro- and anti-inflammatory molecules. Altogether, in addition to its role in axonal regeneration via resolution of the glial scar, here, we reveal a new mechanism via which MMP2 facilitates axonal regeneration, namely orchestrating the expression of pro- and anti-inflammatory molecules by infiltrating innate immune cells.


Assuntos
Axônios/imunologia , Transplante de Medula Óssea , Metaloproteinase 2 da Matriz/genética , Regeneração Nervosa/imunologia , Traumatismos do Nervo Óptico/imunologia , Nervo Óptico/imunologia , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Axônios/ultraestrutura , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/imunologia , Movimento Celular , Proteína GAP-43/genética , Proteína GAP-43/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Inflamação , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Metaloproteinase 2 da Matriz/deficiência , Metaloproteinase 2 da Matriz/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Células Mieloides/imunologia , Regeneração Nervosa/genética , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/patologia , Retina/imunologia , Retina/lesões , Retina/metabolismo , Transplante Heterólogo , Irradiação Corporal Total
8.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073191

RESUMO

Despite being one of the most studied eye diseases, clinical translation of glaucoma research is hampered, at least in part, by the lack of validated preclinical models and readouts. The most popular experimental glaucoma model is the murine microbead occlusion model, yet the observed mild phenotype, mixed success rate, and weak reproducibility urge for an expansion of available readout tools. For this purpose, we evaluated various measures that reflect early onset glaucomatous changes in the murine microbead occlusion model. Anterior chamber depth measurements and scotopic threshold response recordings were identified as an outstanding set of tools to assess the model's success rate and to chart glaucomatous damage (or neuroprotection in future studies), respectively. Both are easy-to-measure, in vivo tools with a fast acquisition time and high translatability to the clinic and can be used, whenever judged beneficial, in combination with the more conventional measures in present-day glaucoma research (i.e., intraocular pressure measurements and post-mortem histological analyses). Furthermore, we highlighted the use of dendritic arbor analysis as an alternative histological readout for retinal ganglion cell density counts.


Assuntos
Glaucoma , Microesferas , Células Ganglionares da Retina , Animais , Modelos Animais de Doenças , Feminino , Glaucoma/induzido quimicamente , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
9.
Sci Rep ; 11(1): 702, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436866

RESUMO

Glaucoma is a disease associated with the loss of retinal ganglion cells (RGCs), and remains one of the primary causes of blindness worldwide. Major research efforts are presently directed towards the understanding of disease pathogenesis and the development of new therapies, with the help of rodent models as an important preclinical research tool. The ultimate goal is reaching neuroprotection of the RGCs, which requires a tool to reliably quantify RGC survival. Hence, we demonstrate a novel deep learning pipeline that enables fully automated RGC quantification in the entire murine retina. This software, called RGCode (Retinal Ganglion Cell quantification based On DEep learning), provides a user-friendly interface that requires the input of RBPMS-immunostained flatmounts and returns the total RGC count, retinal area and density, together with output images showing the computed counts and isodensity maps. The counting model was trained on RBPMS-stained healthy and glaucomatous retinas, obtained from mice subjected to microbead-induced ocular hypertension and optic nerve crush injury paradigms. RGCode demonstrates excellent performance in RGC quantification as compared to manual counts. Furthermore, we convincingly show that RGCode has potential for wider application, by retraining the model with a minimal set of training data to count FluoroGold-traced RGCs.


Assuntos
Aprendizado Profundo , Glaucoma/patologia , Células Ganglionares da Retina/citologia , Software , Animais , Contagem de Células , Camundongos , Camundongos Endogâmicos C57BL
11.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484425

RESUMO

Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.


Assuntos
Fatores de Crescimento Neural/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Glaucoma/metabolismo , Glaucoma/patologia , Humanos , Fatores de Crescimento Neural/genética , Nervo Óptico/metabolismo , Doenças do Nervo Óptico/metabolismo , Retina/metabolismo , Células Ganglionares da Retina/citologia
12.
J Neurosci ; 39(12): 2313-2325, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30655352

RESUMO

Glaucoma is characterized by a progressive loss of retinal ganglion cells (RGCs) in the eye, which ultimately results in visual impairment or even blindness. Because current therapies often fail to halt disease progression, there is an unmet need for novel neuroprotective therapies to support RGC survival. Various research lines suggest that visual target centers in the brain support RGC functioning and survival. Here, we explored whether increasing neuronal activity in one of these projection areas could improve survival of RGCs in a mouse glaucoma model. Prolonged activation of an important murine RGC target area, the superior colliculus (SC), was established via a novel optogenetic stimulation paradigm. By leveraging the unique channel kinetics of the stabilized step function opsin (SSFO), protracted stimulation of the SC was achieved with only a brief light pulse. SSFO-mediated collicular stimulation was confirmed by immunohistochemistry for the immediate-early gene c-Fos and behavioral tracking, which both demonstrated consistent neuronal activity upon repeated stimulation. Finally, the neuroprotective potential of optogenetic collicular stimulation was investigated in mice of either sex subjected to a glaucoma model and a 63% reduction in RGC loss was found. This work describes a new paradigm for optogenetic collicular stimulation and a first demonstration that increasing target neuron activity can increase survival of the projecting neurons.SIGNIFICANCE STATEMENT Despite glaucoma being a leading cause of blindness and visual impairment worldwide, no curative therapies exist. This study describes a novel paradigm to reduce retinal ganglion cell (RGC) degeneration underlying glaucoma. Building on previous observations that RGC survival is supported by the target neurons to which they project and using an innovative optogenetic approach, we increased neuronal activity in the mouse superior colliculus, a main projection target of rodent RGCs. This proved to be efficient in reducing RGC loss in a glaucoma model. Our findings establish a new optogenetic paradigm for target stimulation and encourage further exploration of the molecular signaling pathways mediating retrograde neuroprotective communication.


Assuntos
Glaucoma/fisiopatologia , Neurônios/fisiologia , Optogenética , Células Ganglionares da Retina/fisiologia , Colículos Superiores/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Glaucoma/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL
13.
Front Behav Neurosci ; 11: 190, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29089875

RESUMO

Interpersonal provocation presents an approach-avoidance conflict to the provoked person: responding aggressively might yield the joy of retribution, whereas withdrawal can provide safety. Experimental aggression studies typically measure only retaliation intensity, neglecting whether individuals want to confront the provocateur at all. To overcome this shortcoming of previous measures, we developed and validated the Fight-or-Escape paradigm (FOE). The FOE is a competitive reaction time (RT) task in which the winner can choose the volume of a sound blast to be directed at his/her opponent. Participants face two ostensible opponents who consistently select either high or low punishments. At the beginning of each trial, subjects are given the chance to avoid the encounter for a limited number of times. In a first experiment (n = 27, all women), we found that fear potentiation (FP) of the startle response was related to lower scores in a composite measure of aggression and avoidance against the provoking opponent. In a second experiment (n = 34, 13 men), we altered the paradigm such that participants faced the opponents in alternating rather than in random order. Participants completed the FOE as well as the Dot-Probe Task (DPT) and the Approach-Avoidance Task (AAT). Subjects with higher approach bias scores in the AAT avoided the provoking opponent less frequently. Hence, individuals with high threat reactivity and low approach motivation displayed more avoidant responses to provocation, whereas participants high in approach motivation were more likely to engage in aggressive interactions when provoked. The FOE is thus a promising laboratory measure of avoidance and aggression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...