Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spine (Phila Pa 1976) ; 47(2): E86-E93, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33973563

RESUMO

STUDY DESIGN: Cadaveric. OBJECTIVE: The aim of this study was to quantify the amplitude and duration of surgeons' muscle exertion from pedicle cannulation to screw placement using both manual and power-assisted tools in a simulated surgical environment using surface electromyography (EMG). SUMMARY OF BACKGROUND DATA: A survey of Scoliosis Research Society members reported rates of neck pain, rotator cuff disease, lateral epicondylitis, and cervical radiculopathy at 3 ×, 5 ×, 10 ×, and 100â€Š× greater than the general population. The use of power-assisted tools in spine surgery to facilitate pedicle cannulation through screw placement during open posterior fixation surgery may reduce torque on the upper limb and risk of overuse injury. METHODS: Pedicle preparation and screw placement was performed from T4-L5 in four cadavers by two board-certified spine surgeons using both manual and power-assisted techniques. EMG recorded muscle activity from the flexor carpi radialis, extensor carpi radialis, biceps, triceps, deltoid, upper trapezius, and neck extensors. Muscle activity was reported as a percentage of the maximum voluntary exertion of each muscle group (%MVE) and muscle exertion was linked to low- (0-20% MVE), moderate- (20%-45% MVE), high- (45%-70% MVE) and highest- (70%-100% MVE) risk of overuse injury based on literature. RESULTS: Use of power-assisted tools for pedicle cannulation through screw placement maintains average muscle exertion at low risk for overuse injury for every muscle group. Conversely with manual technique, the extensor carpi radialis, biceps, upper trapezius and neck extensors operate at levels of exertion that risk overuse injury for 50% to 92% of procedure time. Powerassisted tools reduce average muscle exertion of the biceps, triceps, and deltoid by upwards of 80%. CONCLUSION: Power-assisted technique protects against risk of overuse injury. Elevated muscle exertion of the extensor carpi radialis, biceps, upper trapezius, and neck extensors during manual technique directly correlate with surgeons' self-reported diagnoses of lateral epicondylitis, rotator cuff disease, and cervical myelopathy.Level of Evidence: N/A.


Assuntos
Transtornos Traumáticos Cumulativos , Parafusos Pediculares , Cirurgiões , Transtornos Traumáticos Cumulativos/prevenção & controle , Eletromiografia , Humanos , Músculo Esquelético , Extremidade Superior/cirurgia
2.
J Biomech ; 105: 109814, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32423548

RESUMO

The facet capsular ligaments (FCLs) flank the spinous process on the posterior aspect of the spine. The lumbar FCL is collagenous, with collagen fibers aligned primarily bone-to-bone (medial-lateral) and experiences significant shear, especially during spinal flexion and extension. We characterized the mechanical response of the lumbar FCL to in-plane shear, and we evaluated that response in the context of the fiber architecture. In-plane shear tests with both positive and negative shear (i.e., corresponding to flexion and to extension) were performed on eight cadaveric human L4-L5 FCLs. Our most striking observation was subject-dependent asymmetry in the response. All samples showed a toe region of low stiffness, transitioning to greater stiffness at higher strains, for both shear directions. Different samples showed profoundly different transition strains, with some samples stiffening more rapidly in positive shear and some in negative shear. This unpredictable asymmetry, which did not correlate with age, side, or degeneration state, suggesting that collagen fibers in the FCL are sometimes aligned at a slight positive angle from the bone-to-bone axis and sometimes at a negative angle. Fitting the experimental data to a fiber-composite-based finite element model supported this idea, yielding optimal fits with positive or negative off-axis fiber directions (-40° to +40°). Subsequent examination of selected FCLs by small-angle x-ray scattering (SAXS) showed a similar variability in fiber direction. We conclude that small individual differences in lumbar FCL architecture may have a significant effect on lumbar FCL mechanics, especially at moderate strains.


Assuntos
Vértebras Lombares , Fenômenos Biomecânicos , Cadáver , Análise de Elementos Finitos , Humanos , Amplitude de Movimento Articular , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
J Biomech Eng ; 141(11)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141601

RESUMO

Nucleotomy is a common surgical procedure and is also performed in ex vivo mechanical testing to model decreased nucleus pulposus (NP) pressurization that occurs with degeneration. Here, we implement novel and noninvasive methods using magnetic resonance imaging (MRI) to study internal 3D annulus fibrosus (AF) deformations after partial nucleotomy and during axial compression by evaluating changes in internal AF deformation at reference loads (50 N) and physiological compressive loads (∼10% strain). One particular advantage of this methodology is that the full 3D disc deformation state, inclusive of both in-plane and out-of-plane deformations, can be quantified through the use of a high-resolution volumetric MR scan sequence and advanced image registration. Intact grade II L3-L4 cadaveric human discs before and after nucleotomy were subjected to identical mechanical testing and imaging protocols. Internal disc deformation fields were calculated by registering MR images captured in each loading state (reference and compressed) and each condition (intact and nucleotomy). Comparisons were drawn between the resulting three deformation states (intact at compressed load, nucleotomy at reference load, nucleotomy at compressed load) with regard to the magnitude of internal strain and direction of internal displacements. Under compressed load, internal AF axial strains averaged -18.5% when intact and -22.5% after nucleotomy. Deformation orientations were significantly altered by nucleotomy and load magnitude. For example, deformations of intact discs oriented in-plane, whereas deformations after nucleotomy oriented axially. For intact discs, in-plane components of displacements under compressive loads oriented radially outward and circumferentially. After nucleotomy, in-plane displacements were oriented radially inward under reference load and were not significantly different from the intact state at compressed loads. Re-establishment of outward displacements after nucleotomy indicates increased axial loading restores the characteristics of internal pressurization. Results may have implications for the recurrence of pain, design of novel therapeutics, or progression of disc degeneration.

4.
Biomech Model Mechanobiol ; 16(4): 1425-1438, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28361294

RESUMO

The lumbar facet capsular ligament (FCL) primarily consists of aligned type I collagen fibers that are mainly oriented across the joint. The aim of this study was to characterize and incorporate in-plane local fiber structure into a multiscale finite element model to predict the mechanical response of the FCL during in vitro mechanical tests, accounting for the heterogeneity in different scales. Characterization was accomplished by using entire-domain polarization-sensitive optical coherence tomography to measure the fiber structure of cadaveric lumbar FCLs ([Formula: see text]). Our imaging results showed that fibers in the lumbar FCL have a highly heterogeneous distribution and are neither isotropic nor completely aligned. The averaged fiber orientation was [Formula: see text] ([Formula: see text] in the inferior region and [Formula: see text] in the middle and superior regions), with respect to lateral-medial direction (superior-medial to inferior-lateral). These imaging data were used to construct heterogeneous structural models, which were then used to predict experimental gross force-strain behavior and the strain distribution during equibiaxial and strip biaxial tests. For equibiaxial loading, the structural model fit the experimental data well but underestimated the lateral-medial forces by [Formula: see text]16% on average. We also observed pronounced heterogeneity in the strain field, with stretch ratios for different elements along the lateral-medial axis of sample typically ranging from about 0.95 to 1.25 during a 12% strip biaxial stretch in the lateral-medial direction. This work highlights the multiscale structural and mechanical heterogeneity of the lumbar FCL, which is significant both in terms of injury prediction and microstructural constituents' (e.g., neurons) behavior.


Assuntos
Ligamentos Articulares/fisiologia , Modelos Biológicos , Articulação Zigapofisária/fisiologia , Fenômenos Biomecânicos , Cadáver , Colágeno Tipo I , Humanos , Estresse Mecânico , Tomografia de Coerência Óptica
5.
Spine J ; 17(1): 109-119, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27520078

RESUMO

BACKGROUND CONTEXT: The lumbar facet capsular ligament (FCL) is a posterior spinal ligament with a complex structure and kinematic profile. The FCL has a curved geometry, multiple attachment sites, and preferentially aligned collagen fiber bundles on the posterior surface that are innervated with mechanoreceptive nerve endings. Spinal flexion induces three-dimensional (3D) deformations, requiring the FCL to maintain significant tensile and shear loads. Previous works aimed to study 3D facet joint kinematics during flexion, but to our knowledge none have reported localized FCL surface deformations likely created by this complex structure. PURPOSE: The purpose of this study was to elucidate local deformations of both the posterior and anterior surfaces of the lumbar FCL to understand the distribution and magnitude of in-plane and through-plane deformations, including the prevalence of shear. STUDY DESIGN/SETTING: The FCL anterior and posterior surface deformations were quantified through creation of a finite element model simulating facet joint flexion using a realistic geometry, physiological kinematics, and fitted constitutive material. METHODS: Geometry was obtained from the micro-CT data of a healthy L3-L4 facet joint capsule (n=1); kinematics were extracted from sagittal plane fluoroscopic data of healthy volunteers (n=10) performing flexion; and average material properties were determined from planar biaxial extension tests of L4-L5 FCLs (n=6). All analyses were performed with the non-linear finite element solver, FEBio. A grid of equally spaced 3×3 nodes on the posterior surface identified regional differences within the strain fields and was used to create comparisons against previously published experimental data. This study was funded by the National Institutes of Health and the authors have no disclosures. RESULTS: Inhomogeneous in-plane and through-plane shear deformations were prominent through the middle body of the FCL on both surfaces. Anterior surface deformations were more pronounced because of the small width of the joint space, whereas posterior surface deformations were more diffuse because the larger area increased deformability. We speculate these areas of large deformation may provide this proprioceptive system with an excellent measure of spinal motion. CONCLUSIONS: We found that in-plane and through-plane shear deformations are widely present in finite element simulations of a lumbar FCL during flexion. Importantly, we conclude that future studies of the FCL must consider the effects of both shear and tensile deformations.


Assuntos
Ligamentos Articulares/fisiologia , Vértebras Lombares/fisiologia , Articulação Zigapofisária/fisiologia , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Amplitude de Movimento Articular
6.
J Mech Behav Biomed Mater ; 65: 127-136, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569760

RESUMO

The lumbar facet capsular ligament (FCL) articulates with six degrees of freedom during spinal motions of flexion/extension, lateral bending, and axial rotation. The lumbar FCL is composed of highly aligned collagen fiber bundles on the posterior surface (oriented primarily laterally between the rigid articular facets) and irregularly oriented elastin on the anterior surface. Because the FCL is a capsule, it has multiple insertion sites across the lumbar facet joint, which, along with its material structure, give rise to complicated deformations in vivo. We performed planar equibiaxial mechanical tests on excised healthy cadaveric lumbar FCLs (n=6) to extract normal and shear reaction forces, and fit sample-specific two-fiber-family finite element models to the experimental force data. An eight-parameter anisotropic, hyperelastic model was used. Shear forces at maximum extension (mean values of 1.68N and 3.01N in the two directions) were of comparable magnitude to the normal forces perpendicular to the aligned collagen fiber bundles (4.67N) but smaller than normal forces in the fiber direction (16.11N). Inclusion of the experimental shear forces in the model optimization yielded fits with highly aligned fibers oriented at a specific angle across all samples, typically with one fiber population aligned nearly horizontally and the other at an oblique angle. Conversely, models fit to only the normal force data resulted in a broad range of fiber angles with low specificity. We found that shear forces generated through planar equibiaxial extension aided the model fit in describing the anisotropic nature of the FCL surface.


Assuntos
Ligamentos/fisiologia , Vértebras Lombares/fisiologia , Articulação Zigapofisária/fisiologia , Anisotropia , Fenômenos Biomecânicos , Cadáver , Colágeno/análise , Análise de Elementos Finitos , Humanos , Modelos Teóricos , Amplitude de Movimento Articular , Rotação
7.
Ann Biomed Eng ; 43(12): 2953-66, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26055969

RESUMO

We proposed and tested a method by which surface strains of biological tissues can be captured without the use of fiducial markers by instead, utilizing the inherent structure of the tissue. We used polarization-sensitive optical coherence tomography (PS OCT) to obtain volumetric data through the thickness and across a partial surface of the lumbar facet capsular ligament during three cases of static bending. Reflectivity and phase retardance were calculated from two polarization channels, and a power spectrum analysis was performed on each a-line to extract the dominant banding frequency (a measure of degree of fiber alignment) through the maximum value of the power spectrum (maximum power). Maximum powers of all a-lines for each case were used to create 2D visualizations, which were subsequently tracked via digital image correlation. In-plane strains were calculated from measured 2D deformations and converted to 3D surface strains by including out-of-plane motion obtained from the PS OCT image. In-plane strains correlated with 3D strains (R(2) ≥ 0.95). Using PS OCT for marker-free motion tracking of biological tissues is a promising new technique because it relies on the structural characteristics of the tissue to monitor displacement instead of external fiducial markers.


Assuntos
Ligamentos/fisiologia , Vértebras Lombares/fisiologia , Movimento/fisiologia , Adulto , Fenômenos Biomecânicos , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Tomografia de Coerência Óptica
8.
J Biomech Eng ; 136(11)2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25103887

RESUMO

Performing planar biaxial testing and using nominal stress-strain curves for soft-tissue characterization is most suitable when (1) the test produces homogeneous strain fields, (2) fibers are aligned with the coordinate axes, and (3) strains are measured far from boundaries. Some tissue types [such as lamellae of the annulus fibrosus (AF)] may not allow for these conditions to be met due to their natural geometry and constitution. The objective of this work was to develop and test a method utilizing a surface displacement field, grip force-stretch data, and finite-element (FE) modeling to facilitate analysis of such complex samples. We evaluated the method by regressing a simple structural model to simulated and experimental data. Three different tissues with different characteristics were used: Superficial pectoralis major (SPM) (anisotropic, aligned with axes), facet capsular ligament (FCL) (anisotropic, aligned with axes, bone attached), and a lamella from the AF (anisotropic, aligned off-axis, bone attached). We found that the surface displacement field or the grip force-stretch data information alone is insufficient to determine a unique parameter set. Utilizing both data types provided tight confidence regions (CRs) of the regressed parameters and low parameter sensitivity to initial guess. This combined fitting approach provided robust characterization of tissues with varying fiber orientations and boundaries and is applicable to tissues that are poorly suited to standard biaxial testing. The structural model, a set of C++ finite-element routines, and a Matlab routine to do the fitting based on a set of force/displacement data is provided in the on-line supplementary material.


Assuntos
Teste de Materiais/métodos , Fenômenos Mecânicos , Idoso , Fenômenos Biomecânicos , Feminino , Análise de Elementos Finitos , Humanos , Disco Intervertebral/citologia , Masculino , Pessoa de Meia-Idade , Estresse Mecânico
9.
Chem Biol ; 21(5): 647-56, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24726833

RESUMO

Although reactive oxygen species (ROS) are better known for their harmful effects, more recently, H2O2, one of the ROS, was also found to act as a secondary messenger. However, details of spatiotemporal organization of specific signaling pathways that H2O2 is involved in are currently missing. Here, we use single nanoparticle imaging to measure the local H2O2 concentration and reveal regulation of the ROS response dynamics and organization to platelet-derived growth factor (PDGF) signaling. We demonstrate that H2O2 production is controlled by PDGFR kinase activity and EGFR transactivation, requires a persistent stimulation, and is regulated by membrane receptor diffusion. This temporal filtering is impaired in cancer cells, which may determine their pathological migration. H2O2 subcellular mapping reveals that an external PDGF gradient induces an amplification-free asymmetric H2O2 concentration profile. These results support a general model for the control of signal transduction based only on membrane receptor diffusion and second messenger degradation.


Assuntos
Peróxido de Hidrogênio/metabolismo , Nanopartículas/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Int J Cancer ; 131(8): 1941-50, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22275155

RESUMO

Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor superfamily, has been shown to have inhibitory effect on many tumor types. However, the effect of BMP-2 on human renal cell carcinoma (RCC) is still unknown. We previously showed that BMP-2 inhibits tumorigenicity of cancer stem cells in human osteosarcoma OS99-1 cells. Our study investigates the effect of BMP-2 on human RCC using ACHN and Caki-2 cell lines. Three types of BMP receptors were found to be expressed in ACHN and Caki-2 cells. In vitro, BMP-2 was found to inhibit the growth of ACHN and Caki-2 cells. The antiproliferative effect seems to be due to cell cycle arrest in the G1 phase, which was revealed by flow cytometry analysis. Using reverse transcriptase polymerase chain reaction analysis, we demonstrated BMP-2 upregulated osteogenic markers Runx-2 and Collagen Type I gene expression in ACHN and Caki-2 cells. Treatment of ACHN and Caki-2 cells with BMP-2 induced a rapid phosphorylation of Smad1/5/8. In vivo, all animals receiving low number of ACHN (1 × 10(4)) and Caki-2 (5 × 10(4)) cells treated with 30 µg of BMP-2 per animal showed limited tumor growth with significant bone formation, whereas untreated cells developed large tumor masses without bone formation in immunodeficient non-obese diabetic (NOD)/severe combined immunodeficient (SCID) mice. These results suggest that BMP-2 inhibits growth of RCC as well as causes induction of osseous bone formation. Further research is needed to determine the relationship between inhibition of cell proliferation and bone induction.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Carcinoma de Células Renais/prevenção & controle , Proliferação de Células , Neoplasias Renais/prevenção & controle , Osteogênese , Animais , Western Blotting , Proteína Morfogenética Óssea 2/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Humanos , Técnicas Imunoenzimáticas , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Cancer Biol Ther ; 11(5): 457-63, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21178508

RESUMO

Previously, based on high ALDH activity, we showed that cancer stem cells (CSCs) could be identified as ALDH(br) cells from an aggressive human osteosarcoma OS99-1 cell line. In this study, we evaluate the impact of BMP-2 on CSCs.Three types of BMP receptors were expressed in freshly sorted ALDH(br) cells. In vitro, growth of the sorted ALDH(br) cells was inhibited by BMP-2. Using RT-PCR analysis, BMP-2 was found to down-regulate the expression of embryonic stem cell markers Oct3/4, Nanog, and Sox-2, and up-regulate the transcription of osteogenic markers Runx-2 and Collagen Type I. In vivo, all animals receiving ALDH(br) cells treated with BMP-2 did not form significant tumors, while untreated ALDH(br) cells developed large tumor masses in NOD/SCID mice. Immunostaining confirmed few Ki-67 positive cells were present in the sections of tumor containing ALDH(br) cells treated with BMP-2. These results suggest that BMP-2 suppresses tumor growth by reducing the gene expression of tumorigenic factors and inducing the differentiation of CSCs in osteosarcoma. BMP-2 or BMP-2-mimetic drugs, if properly delivered to tumor and combined with traditional therapies, may therefore provide a new therapeutic option for treatment of osteosarcoma.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Células-Tronco Neoplásicas/patologia , Osteossarcoma/patologia , Aldeído Desidrogenase/metabolismo , Animais , Linhagem Celular Tumoral , Colágeno Tipo I/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Antígeno Ki-67/imunologia , Camundongos , Camundongos SCID , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fatores de Transcrição SOXB1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...