Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824209

RESUMO

The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis (dcw) gene cluster. Here, we present the discovery of a cell wall enzyme that can substitute for MurG. A mutant of Kitasatospora viridifaciens lacking a significant part of the dcw cluster, including murG, surprisingly produced lipid II and wild-type peptidoglycan. Genomic analysis identified a distant murG homologue, which encodes a putative enzyme that shares only around 31% amino acid sequence identity with MurG. We show that this enzyme can replace the canonical MurG, and we therefore designated it MglA. Orthologues of mglA are present in 38% of all genomes of Kitasatospora and members of the sister genus Streptomyces CRISPR interference experiments showed that K. viridifaciens mglA can also functionally replace murG in Streptomyces coelicolor, thus validating its bioactivity and demonstrating that it is active in multiple genera. All together, these results identify MglA as a bona fide lipid II synthase, thus demonstrating plasticity in cell wall synthesis.IMPORTANCE Almost all bacteria are surrounded by a cell wall, which protects cells from environmental harm. Formation of the cell wall requires the precursor molecule lipid II, which in bacteria is universally synthesized by the conserved and essential lipid II synthase MurG. We here exploit the unique ability of an actinobacterial strain capable of growing with or without its cell wall to discover an alternative lipid II synthase, MglA. Although this enzyme bears only weak sequence similarity to MurG, it can functionally replace MurG and can even do so in organisms that naturally have only a canonical MurG. The observation that MglA proteins are found in many actinobacteria highlights the plasticity in cell wall synthesis in these bacteria and demonstrates that important new cell wall biosynthetic enzymes remain to be discovered.


Assuntos
Actinobacteria/enzimologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Parede Celular/genética , Metabolismo dos Lipídeos , Lipídeos/classificação , N-Acetilglucosaminiltransferases/genética
2.
FEMS Microbiol Lett ; 366(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253991

RESUMO

Twitter is one of the most popular social media networks that, in recent years, has been increasingly used by researchers as a platform to share science and discuss ongoing work. Despite its popularity, Twitter is not commonly used as a medium to teach science. Here, we summarize the results of #EUROmicroMOOC: the first worldwide Microbiology Massive Open Online Course taught in English using Twitter. Content analytics indicated that more than 3 million users saw posts with the hashtag #EUROmicroMOOC, which resulted in over 42 million Twitter impressions worldwide. These analyses demonstrate that free Microbiology MOOCs shared on Twitter are valuable educational tools that reach broad audiences throughout the world. We also describe our experience teaching an entire Microbiology course using Twitter and provide recommendations when using social media to communicate science to a broad audience.


Assuntos
Microbiologia , Mídias Sociais , Comunicação , Disseminação de Informação/métodos , Rede Social
3.
J Evol Biol ; 24(12): 2663-77, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21954829

RESUMO

Although verbal theories of speciation consider landscape changes, ecological speciation is usually modelled in a fixed geographical arrangement. Yet landscape changes occur, at different spatio-temporal scales, due to geological, climatic or ecological processes, and these changes result in repeated divisions and reconnections of populations. We examine the effect of such landscape dynamics on speciation. We use a stochastic, sexual population model with polygenic inheritance, embedded in a landscape dynamics model (allopatry-sympatry oscillations). We show that, under stabilizing selection, allopatry easily generates diversity, but species coexistence is evolutionarily unsustainable. Allopatry produces refuges whose persistence depends on the characteristic time scales of the landscape dynamics. Under disruptive selection, assuming that sympatric speciation is impossible due to Mendelian inheritance, allopatry is necessary for ecological differentiation. The completion of reproductive isolation, by reinforcement, then requires several sympatric phases. These results demonstrate that the succession of past, current and future geographical arrangements considerably influence the speciation process.


Assuntos
Meio Ambiente , Especiação Genética , Modelos Biológicos , Isolamento Reprodutivo , Simpatria , Simulação por Computador , Padrões de Herança , Fenótipo , Densidade Demográfica
4.
Evolution ; 56(7): 1331-9, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12206235

RESUMO

Wolbachia pipientis is a bacterium that induces cytoplasmic incompatibility (CI), the phenomenon in which infected males are reproductively incompatible with uninfected females. CI spreads in a population of hosts because it reduces the fitness of uninfected females relative to infected females. CI encompasses two steps: modification (mod) of sperm of infected males and rescuing (resc) of these chromosomes by Wolbachia in the egg. Infections associated with CI have mod+ resa+ phenotypes. However, mod- resc+ phenotypes also exist; these do not result in CI. Assuming mod/resc phenotypes are properties of the symbiont, theory predicts that mod- resc+ infections can only spread in a host population where a mod+ resc+ infection already occurs. A mod- resc+ infection spreads if the cost it imposes on the infected females is lower than the cost inflicted by the resident (mod+ resc+) infection. Furthermore, introduction of a mod- Wolbachia eventually drives infection to extinction. The uninfected population that results can be recolonized by a CI-causing Wolbachia. Here, we investigated whether variability for induction of CI was present in two Tetranychus urticae populations. In one population all isofemale lines tested were mod-. In the other, mod+ resc+ and mod- resc+ isofemale lines coexisted. We found no evidence for a cost difference to females expressing either type (mod-/-). Infections in the two populations could not be distinguished based on sequences of two Wolbachia genes. We consider the possibility that mod- is a host effect through a population dynamics model. A mod- host allele leads to infection extinction in the absence of fecundity differences. Furthermore, the uninfected population that results is immune to reestablishment of the (same) CI-causing Wolbachia.


Assuntos
Citoplasma/microbiologia , Ácaros/microbiologia , Wolbachia/fisiologia , Animais , Citoplasma/fisiologia , Variação Genética , Masculino , Ácaros/fisiologia , Modelos Teóricos , Reprodução/fisiologia , Wolbachia/genética , Wolbachia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...